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Abstract

Since the realization of high quality superconducting microwave cavities[20], the so-called circuit
quantum electrodynamics enables the possibility to investigate the coherent interaction of light
and matter. Arti�cial atoms can be realized with quantum dots, and experiments have already
proved strong coupling between a quantum dot and a microwave cavity[22, 23]. We study
two parallel quantum dots arranged in the geometry of an Aharonov-Bohm interferometer
(ABI)[18, 19]. Each dot is capacitively coupled to a microwave cavity. We explore how quantum
correlation between the two cavity �elds is generated by the coherent transport of a single
electron traveling in two di�erent paths of the ABI. We want to calculate the covariance of the
two cavity �elds by use of a diagrammatic perturbative expansion (Keldysh Greens functions)
to the fourth order in the dot-cavity coupling constant. Thus we develop an analytic formula
ready-made for a numerical evaluation to test the covariance for varying magnetic �ux.
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Deutsche Zusammenfassung

Motiviert von unterschiedlichen Experimenten ein System aus Quantenpunkten und Kavitäten
zu untersuchen, betrachten wir ein System, in dem zwei Quantenpunkte in ein Aharonov-Bohm
Interferometer (ABI) eingebettet sind, wobei jeder Quantenpunkt kapazitiv an eine Mikrow-
ellenkavität gekoppelt wurde.

Unser Ziel ist es die Korrelation oder Quantenverschränkung der beiden Kavitäten zu unter-
suchen, verursacht durch den kohärenten Transport eines einzelnen Elektrons, das sich in zwei
verschiedenen Armen des ABI bewegt.

In dieser Thesis haben wir uns zunächst auf die Korrelation beschränkt. Dazu berechnen
wir die Kovarianz der beiden Mikrowellenkavitäten. Dafür haben wir einen äquivalenten aber
vollständig zeitgeordneten Ausdruck de�niert. Diesen entwickeln wir nun in einer diagramma-
tischen Störungsentwicklung bis zur vierten Ordnung der Kopplungskonstanten von Quanten-
punkt und Kavität. Dazu nutzen wir die Keldysh Green'schen Funktionen. Um die Terme
der Störungsrechnung zu berechnen verwenden wir das Wick'sche Therorem. Dieses führt zu
einer Summe mehrerer Multiplikationen Green'scher Funktionen, die man auch durch Feynman
Diagramme darstellen kann. Wir können zeigen, dass sich die Kovarianz auf sieben Diagramme
reduziert.

Um diese Green'schen Funktionen zu berechnen greifen wir sowohl für die freie retardierte und
avancierte als auch für die Kelysh Green'schen Funktionen auf die Dyson Gleichung zurück. Um
die sieben Diagramme zu berechnen identi�zieren wir zunächst drei verschiedene Diagramm-
typen. Jeden dieser Typen haben wir von Konturzeiten zu Realzeiten transformiert. Dazu
wurde die Keldysh Kontur parametrisiert. Normalerweise führt dies zu einer groÿen Anzahl
von Termen, da jede Konturzeit auf zwei verschiedenen Zweigen der Keldysh Kontur liegen
könnte. Da wir den Grenzfall einer Temperatur von Null Klevin betrachten reduzieren sich alle
Variationsmöglichkeiten auf eine einzige.

Im nächsten Schritt haben wir die Fouriertransformationen der Green'schen Funktionen einge-
setzt und über die Zeiten integriert. Übrig blieb eine Integration von vier freien bosonischen und
vier fermionischen Green'schen Funktionen, integriert über vier unterschiedliche Frequenzen.

Mit einer Partialbruchzerlegung konnten wir die Integration über zwei Frequenzen durchführen.
Wir haben also eine analytische Formel erhalten, in der nur noch zwei Integrationen über die
Frequencen enthält.

Zusammengefasst haben wir eine analytische Formel für die Kovarianz hergeleitet, die nun nu-
merisch berechnet werden kann. Der nächste Schritt ist diese numerische Implementierung,
die es uns ermöglicht über die zwei übrigen Frequenzen zu integrieren und das Verhalten des
Systems, abhängig von Gröÿen wie dem magnetischen Fluss oder die Bias Spannung, zu unter-
suchen.

Anschlieÿend werden wir untersuchen ob die Zustände der Kavitäten nicht nur korreliert son-
dern sogar quantenverschränkt sind. Dazu berechnen wir die Kohärenzfunktion zweiter Ord-
nung und testen die Cauchy-Schwarz Ungleichung, indem wir erneut die diagrammatische
Störungsentwicklung benutzen, ähnlich wie bereits in dieser Thesis gezeigt.
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1 Introduction and Theoretical background

In recent years, the development and fabrication of devices of nanoscaled length is well ad-
vanced. Also the theoretical interest increased and the �eld of mesoscopic physics is getting
larger. The transport properties of electronic nanostructures is a large research area. Phase co-
herent transport enables the possibility for interference experiments. A well studied mesoscopic
system is the Aharonov-Bohm interferometer (ABI)[11].

Important and well studied systems are quantum dots. Quantum dots consist of a small amount
of localized electrons, con�ned in all three spatial dimensions with discretized energy levels. The
investigation of quantum dots revealed interesting properties and phenomena like the resonant
tunneling[24], Coulomb blockade[25, 26] and the Kondo e�ect[27].

The cavity quantum electrodynamics deals with the interaction of light and matter at the most
elementary form. For instance a single atom can interact with few photons of a single-mode
cavity[20, 38]. The dipole interaction with the photon �eld induces a controllable entanglement
by modi�cation of the photon �eld[21].

The so-called circuit quantum electrodynamics investigates similar systems as the cavity quan-
tum electrodynamics but the photon is stored in a one-dimensional on-chip resonator[39]. The
atom can be replaced with a quantum dot with two levels which acts like an arti�cial atom[38].
Several experiments have already proven a strong coupling between quantum dots and mi-
crowave cavities[22]. Since this can also be used as a qubit and the qubit could be readout
through the cavity the circuit quantum electrodynamics is an interesting �eld of quantum
computation.

In this thesis we combine several of these aspects. We developed a system of two parallel
quantum dots, whereby each dot is embedded in one path of an ABI. Both dots are indepen-
dently coupled to two separate microwave cavities. Due to the coherent transport of an electron
through the two branches of the ABI, i.e. through the dots that are coupled to the cavities,
we expect a quantum correlation or entanglement of the two photonic �elds. We explore this
correlation using a diagrammatic perturbative expansion, in particular the Keldysh Green's
functions, and derive an analytic formula ready for a numerical evaluation.
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1 Introduction and Theoretical background

1.1 Electronic Transport

It is well known that we can describe the current in macroscopic systems by Ohm's law I =
G ·U , which says that the current is proportional to the applied voltage. The constant of
proportionality is the conductance G = σAc/L. The current increases linear with the cross-
sectional area Ac and decreases due to the length of the sample L. Here the constant of
proportionality is the electrical conductivity σ which depends on the material[4].

Since it became possible to produce much smaller devices one could ask what changes, regarding
this behavior, when the dimensions of the system are reduced. The answer is, that Ohm's law
is no longer valid. To describe this so-called mesoscopic regime, which is still larger than the
atomic scale, we have to compare the dimensions of the conductor with some characteristic
length scales[1].

The �rst length scale is the Fermi-wavelength λF = 2π/kF corresponding to the de-Broglie
wavelength of an electron at the Fermi level. Since we consider the system at low temperatures
the current is mainly determined by electrons near the Fermi level. The second length scale is
the mean free path Lm = vF · τm corresponding the distance an electron could travel without
being scattered whereby vF is the Fermi velocity and τm is the corresponding traveling-time.
Finally we have the phase-relaxation length Lφ "[...] the distance that an electron travels before
its initial phase is destroyed"[1]. For this we imagine that an electron splits its path into two and
recombine them later. If these paths are equal there should be a perfect constructive interference
at the end. Elastic scattering at static defects doesn't a�ect this process in contrast to inelastic
scattering like electron-electron and electron-phonon scattering or scattering on impurities with
an internal degree of freedom like magnetic impurities[1]. Since these length scales depend on
several external in�uences, like the temperature or the magnetic �eld, they can vary from only
a few nanometers to hundreds of micrometers [1].

We have mesoscopic regime if the length scale L of the system is smaller than the phase-
relaxation length Lφ. In this case a coherent propagation of the electron through the conductor
is possible whereas the mean free path Lm still determines the amount of scattering events on
spatial potential �uctuations inside the conductor.

Figure 1: a) Classical di�usive transport regime. b) Quantum transport regime an weak local-
ization. c) Ballistic transport regime. From [7].

In the well known macroscopic regime, where Ohm's law is valid, the length of the system is
much larger than the mean free path Lm ≪ L and the phase-relaxation length. Here we have
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1.1 Electronic Transport

di�usive classical transport, depicted in Fig.(1) (a), and the conductivity is described by the
Drude model. If L is smaller than Lφ but larger than Lm, Lφ > L > Lm, we have di�usive
quantum transport in a mesoscopic regime. The Drude model doesn't hold in this case. The
electron is scattered several times inside the sample. It is possible that it is backscattered on
exactly the same path as we can see in Fig. (1) (b). If Lφ is now larger than Lm this results
in an destructive interference and we have a kind of weak localization. This deconstructive
interference leads to a negative logarithmic correction to the Drude Model[7]. If the length
scale of the system is much smaller than the mean free path and the phase-relaxation length,
L≪ Lm, Lφ we are in the ballistic regime and the scattering with electrons or the boundaries
of the sample dominates, see Fig. (1) (c).

If the length is comparable to the Fermi wavelength λF this means that the electron cannot
propagate in this direction. Therefore the system is completely con�ned in this dimension. If
we split the length scale L of the system in the lengths of the three spatial dimensions Lx,y,z

we obtain, depending on the number of completely con�nements, di�erent geometries in the
mesoscopic regime. We abbreviate the Fermi wavelength, mean free path and phase-relaxation
length with L0[6].

Lx,y > L0 > Lz
Two dimensional
nanostructure

Quantum Wells

Lx > L0 > Ly, z
One dimensional
nanostructure

Quantum Wires

L0 > Lx,y,z
Zero dimensional
nanostructure

Quantum Dots

Table 1: Nanostructures in di�erent dimensions compare [6].

A description of the conductance in this regime was developed by Landauer in the end of the
1950s[8]. His theory is also called Landauer or scattering approach. He proposed "[...]that if
one can ignore inelastic interactions, a transport problem can always be viewed as a scattering
problem"[4]. Therefore the electrical conductance can be expressed in terms of the transmission
probability. This relation is the so-called Landauer formula

G =
2e2

h

N∑
n=1

Tn .

The main idea is to determine the transmission values of all modes that contribute to the
current. These individual transmission have to be summed up whereby a perfect transmission
would give exactly one quantum of conductance G0 = 2e2/h. Therefore the current depends
not directly on the length and cross-sectional area of the conductor but indirectly. A larger
contact leads to a di�erent amount of modes that give an contribution to the conductance[4].

A very common used two dimensional device is a GaAs-AlGaAs-heterostructure. GaAs and Al-
GaAs have di�erent conduction, valence and Fermi energies and if they are connected electrons
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1 Introduction and Theoretical background

travel towards the GaAs with the lower Fermi level and create positively charged donors in the
AlGaAs. This leads to an electrostatical potential which a�ects the conduction and valence
band. An area appears where a sharp peak and dip of the conduction band creates a small
area under the constant Fermi energy and con�nes the electrons in one dimension. This is the
so-called two dimensional electron gas (2-DEG), a thin conduction layer[1].

This heterostructure can be used to generate a zero dimensional nanostructure - a quantum
dot. For this one evaporates gold electrodes on top of the GaAs-AlGaAs-heterostructure and
applies a gate voltage. Due to the �eld e�ect of the electrodes the two dimensional electron
gas is depleted and one could de�ne a small quasi-zero dimensional area, the quantum dot. A
similar procedure can be applied to carbon nanotubes instead of the 2DEG[37].

These quantum dots are similar to atoms: strong localized electrons with a discretization of
the energy levels. Therefore quantum dots can be used as arti�cial atoms. The advantage is
that one can control the properties of the dots easily in contrast to normal atoms[19].

To study such more complex phenomena(i.e. interactions) we have to introduce a new method
because the Landauer approach is not able to describe transport situations with inelastic
interactions[4]. One theoretical method is the Keldysh Greens functions technique that is
able to describe the quantum transport in a mesoscopic conductor beyond the linear regime
(nonequilibrium regime) and in presence of interaction in the quantum dots. The only condition
is that we know the Hamiltonian of the system.

Noninteracting Resonant-Level Model

In this thesis we consider systems that contain quantum dots which are coupled via tunneling
to the leads. So we start by discussing mesoscopic tunneling structures in the noninteracting
resonant-level model. Then the Hamiltonian of a mesoscopic tunneling model can be divided
in three parts[2]

H =HC +Hcen +HT .

HC =
∑

kα∈L,R

εkαc
†
kαckα Hamiltonian of the noninteracting contacts(i.e. Fermi gas).

Hamiltonian of the central region. For the noninteracting
Hcen =

∑
i

εid
†
idi resonant-level model the Hamiltonian includes only the non-

interacting creation and annihilation operator of an electron
in state i.

HT =
∑

kα∈L,R
i

Vkα,ic
†
kαdi + h.c. Tunneling coupling of the leads and the central region with

the resonant levels.

Σ =ΣL + ΣR The self energy of the system is given by the contributions
of the tunneling.

Σα,mn(ε) =
∑
k

V ∗kα,mgkαVkα,n Tunneling self-energy.
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1.2 Double-Dot Aharonov-Bohm Interferometer

εkα, εi are the energy levels of the contacts or dots. c†kα, ckα are the creation and annihilation
operators of the contacts and d†i , di those of the dots. Vkα,i is the tunneling coupling between
the lead α and dot i. gkα is an unperturbed Green's function of the system.

1.2 Double-Dot Aharonov-Bohm Interferometer

As a �rst example of the noninteracting resonant-level model we consider the case of two
resonant levels: A parallel double quantum dot coupled to a left and right lead. As an additional
controlling �eld we apply a magnetic �ux. The system is depicted in Fig. (2). The magnetic
�ux leads to a phase shift of the electrons. Since this symmetric phase shift occurs when the
electron travels between a lead r and a dot i we include it in the tunneling parameter tri = te±i

φ
4

whereby the sign depends on the traveling direction of the electron. The Hamiltonian reads

H =
∑

k,r=L,R

εkrc
†
krckr +

∑
i=1,2

εid
†
idi +

∑
i=1,2

k,r=L,R

(
tric
†
krdi + h.c.

)

The operators are de�ned for the noninteracting resonant-level model.

Figure 2: Double-dot Aharonov Bohm Interferometer. Two parallel quantum dots are coupled
to a left and right lead. A magnetic �ux is applied in the loop.

This geometry plays an important role in experimental physics. In general the measured quan-
tity in experiments is the current. The Aharanov Bohm interferometer (ABI) o�ers the possibil-
ity to perform interference experiments with mesoscopic nanostructures, to use the information
provided in the phase. The geometry is like the one in Fig.(2) except for the two quantum
dots. A magnetic �eld B is applied in such a way that it is con�ned inside the area enclosed
by the loop but vanishes along the loop and beyond. The electron travels along these paths
and its phase depends on the vector potential A caused by the magnetic �eld, B = ∇ × A.
If an electron takes on turn through the complete ring it acquires the Aharonov-Bohm-phase:
∆φAB = −|e|/~

∮
Ads = −|e|/~ϕ = −2πϕ/ϕ0[11].

In a transport experiment an electron can travel trough the upper or lower branch which leads
to an e�ective phaseshift of ∆φAB. Due to this an interference periodic in the magnetic �eld,
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1 Introduction and Theoretical background

with periodicity ∆B = h/eS occurs in the measured current by sweeping the magnetic �eld,
while S is the area of the loop[7].

Studying transport through quantum dots, like resonant tunneling, Coulomb blockade, and
the Kondo e�ect the common measured quantity is the current which provides no information
weather the transport is coherent or not. This information can be obtained by embedding a
quantum dot in an ABI[12].

Transport through quantum dots that are arranged in an ABI are theoretically well investi-
gated, both with one or two dots, taking into account electron-electron Coulomb interaction or
spin[12, 13, 14]. There have also been several experiments placing one quantum dot in an ABI
and considering coherent transport[15, 16] or the Kondo-e�ect[17]. An experiment with two
quantum dots, each one in another branch and depicted in Fig. (3), was done by A. Holleitner
et al.[18]. They were able to tune the coupling between the dots and demonstrate for a weak
coupling Aharonov-Bohm oscillation on the Coulomb diamonds, see Fig.(3) (c). For interme-
diate coupling the showed a coherent coupling of the two dots and that the tunnel splitting
depends on the magnetic �eld, see Fig.(3) (d).

Figure 3: Experimental results of A. Holleitner et al.[18] for weak and intermediate coupling of
two quantum dots in an ABI. a) and b): Setup of the device. Two parallel quantum
dots coupled to a left and right gate 1,2 and the gates 3-4 for the measurement. c)
Weak coupling: Coulomb blockade resonances of the double dot, through detuning of
the gates 3-5, and Aharonov-Bohm interferences in the current amplitude by varying
the magnetic �eld as shown in the inset. d)Intermediate coupling: Charging diagram
spanned by voltage of gate 3 and 4. The two connected circles denote the coherent
coupling of the two quantum dots. Two arrows pointing at each other show two
regions that indicates coherent coupling. Ref. [18].

1.3 Single Quantum Dot Coupled to a Microwave Cavity

Another interesting application in mesoscopic physics of the quantum dots is in the "circuit
quantum electrodynamic". Since the realization of high quality superconducting microwave
cavities[20], circuit quantum electrodynamics enables the possibility to investigate the coherent
interaction of light and matter. This can be reached using a quantum dot that represents some
kind of an arti�cial atom and placed in a high quality superconducting microwave cavity[20, 22,
23]. The schematic representation in Fig.(4) shows the quantum dot, that can be considered
as a two level system coupled to a cavity with coupling strength g.

20



1.3 Single Quantum Dot Coupled to a Microwave Cavity

Figure 4: Schematic representation of a quantum dot, considerable as a two level system, cou-
pled to a microwave cavity with coupling strength g and the decay rate κ of the
photon �eld. Picture adapted from [21].

Delbecq et al. studied the case of one[22] or two[23] quantum dots coupled to a cavity. There
are two possibilities for the readout. In the �rst case the state of the quantum dot a�ect
the electromagnetic mode which can be observed by detecting the outgoing �eld. The second
opportunity is the detection of the state of the quantum dot so that one can gain information
regarding the photon state[21]. In the case of the single quantum dot coupled to a microwave
cavity they were able to detect the strong electronic interactions of the quantum dot as Coulomb
diamonds and the Kondo e�ect as depicted in Fig.(5) (a), whereby the red line is a cut at zero
bias that we will not discuss here. By tuning the input power of the microwave cavity one can
observe the funnel shaped splitting of the energy levels of the quantum dot depicted in Fig.(5)
(b). This could be due to a direct coupling of the quantum dot levels with the cavity mode[21].

Figure 5: Color scale plot of the di�erential conductance of one quantum dot. a) Both Coulomb
diamonds and the the Kondo ridge at zero bias can be seen by sweeping the source-
drain and gate voltages of the dot[21]. b) Energy level splitting depending on the input
power of the microwave cavity for a quantum dot in Coulomb blockade regime[21].

They also investigated two separated quantum dots that are both coupled to the same cavity.
They drove the gate voltages of each quantum dot and readout the di�erential conductance of
one quantum dot. As depicted in Fig.(6) (a) they were able to detect a crossing and anticrossing.
Fig.(6) (b) is a close up of an anticrossing region. This indicates some kind of correlation
between the displaced dots since a normal superposition should lead to an equal behavior of
the energy levels of the dot[21].
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1 Introduction and Theoretical background

Figure 6: Color scale plot of the di�erential conductance of one quantum dot. a) Both Coulomb
diamonds and the the Kondo ridge at zero bias can be seen by sweeping the source-
drain and gate voltages of the dot[21]. b) Energy level splitting depending on the input
power of the microwave cavity for a quantum dot in Coulomb blockade regime[21].

1.4 Inequalities in Quantum Coherence Theory

We have seen so far that there are several possibilities to investigate a single or several quan-
tum dots. In the case of several quantum dots, like the two separated quantum dots in the
microwave cavity, it is of high interest if the states of the dots are correlated or even entangled.
Entanglement is one of the most important things to di�er between classical and the quantum
physics. One can derive several inequalities to proof a correlation or entanglement.

We can describe the quantum mechanical state of a system via its density matrix, ρ. If we
measure an observable we determine actually the expectation value that is a trace of the density
matrix and the related operator. We consider a bipartite system, containing two subsystems (1)
and (2), for example two quantum dots, two cavities or a dot and a cavity, with commutating
operators. The system is de�ned as separable or uncorrelated if the density matrix ρ of the
combined system is a direct product of the two sub-system density matrices ρ(1) and ρ(2), so
ρ = ρ(1) ⊗ ρ(2)[28].
In this separable case the measurement result of any value A(1) of the �rst subsystem is com-
pletely independent of the measurement result of any value B(2) of the second one. This means⟨
A(1)B(2)

⟩
=
⟨
A(1)

⟩ ⟨
B(2)

⟩
for any A and B. If the system is not separable and the density

matrix cannot be factorized, so ρ ̸= ρ(1) ⊗ ρ(2), this equality is violated and concerning this
matter we can de�ne the covariance

C := cov(A(1)B(2)) =
⟨
A(1)B(2)

⟩
−
⟨
A(1)

⟩ ⟨
B(2)

⟩
.

The covariance is nonzero in the case of a correlation between the two subsystems[28].

To prove if the system is not simply correlated but entangled (i.e. quantum correlation) we
need di�erent equalities. The most known inequality that is violated in the case of quantum
entanglement is the Bell's inequality. It contradicts the theory of Einstein, Podolsky, and Rosen
that the quantum theory can be explained with hidden variables[30]. But there are several more
where the general separability criterion is used[31, 32, 33, 34, 35]. Furthermore it exists a class
of inequalities which are applications of the Cauchy-Schwarz inequality. For instance, Ref. [36]
analyses entanglement criteria based on the Cauchy-Schwarz inequality |⟨x, y⟩|2 ≤ ⟨x, x⟩ ⟨y, y⟩

22



1.4 Inequalities in Quantum Coherence Theory

and the properties of separable states. We focus on bipartite systems with the expectation
value ⟨A1A2B1B2⟩, whereby Ai and Bj belong to the two subsystems, and use it to detect
entanglement.

The inequality ∣∣∣⟨A1A2B1B2⟩sep
∣∣∣2 ≤ ⟨A1A

†
1B
†
2B2

⟩
sep

⟨
A†2A2B1B

†
1

⟩
sep

is valid for separable states and can only be violated by entangled states, which depends on the
choice of the operators A and B.

If A2 = B1 = 1, A1 = A† = (am)† and B2 = B = bn, whereby a, b are the annihilation and a†,
b† the creation operators of system A,B, we obtain the criterion∣∣∣⟨am(b†)n⟩

sep

∣∣∣2 ≤ ⟨(a†)mam(b†)nbn⟩
sep

.

If A1 = B1 = 1, A2 = (am)† and B2 = B = bn we obtain the criterion∣∣∣⟨ambn⟩sep∣∣∣2 ≤ ⟨(a†)mam⟩sep ⟨(b†)nbn⟩sep .

These two criterion where also discussed by Hillery and Zubairy[31].
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1.5 Parallel Double-Dot Coupled to Microwave Cavities

We consider two parallel quantum dots with energy levels ε1,2, that are arranged in the geometry
of an Aharonov-Bohm interferometer. The applied �ux creates a phase shift to the electrons,
depending on their traveling direction. Each dot is capacitively coupled to a microwave cavity
with di�erent resonance frequencies ωa,b and to a common left and right lead.

Figure 7: System of two parallel quantum dots, each one coupled to a microwave cavity and to
a common left and right lead.

The system is described through a modi�ed Anderson-Holstein Hamiltonian that includes the
fermion-photon interaction.

H =
∑

k,r=L,R

εkrc
†
krckr +

∑
i=1,2

εid
†
idi +

∑
i=1,2

k,r=L,R

(
tric
†
krdi + h.c.

)

+
∑
α=a,b

~ωαα
†α + λa(a+ a†)d†1d1 + λb(b+ b†)d†2d2 . (1.1)
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Here c†kr and ckr with r = L,R are the creation and annihilation operator of the electrons in
the left and right lead. d†i and di with i = 1, 2 are the creation and annihilation operator of the
electrons in the two quantum dots and a, b and a†, b† are the creation and annihilation operator
of the photons with frequency ωa,b in cavity a, b. The coupling element tri = te±i

φ
4 describes,

just like it was explained in section (1.2), the hopping of an electron from lead r to dot i and
vice versa including a phase shift ±φ = ±2πΦ/Φ0 whereby the sign depends on the traveling
direction of the electron.

Quantum Correlation and Entanglement - A Heuristic Argument

We want to explore how quantum correlation and entanglement between the two cavity �elds
is generated by the coherent transport of a single electron traveling in two di�erent paths of
the ABI.

Figure 8: Sketch of the main idea regarding an entanglement of two microwave cavities via a
coupled parallel quantum double-dot with an additional applied magnetic �ux. The
electron "splits" because of the possibility to travel trough both branches. Therefore
the state of the electron is a coherent superposition of the states of the two dots. The
correlation is extended to the two cavities even when the electron leaves the system.

When one electron travels in the system it "splits" in the sense that it can travel in the upper
or in the lower branch. Depending on the traveling direction a positive or negative phase shift
occurs. We assume that the state of the electron is a coherent superposition between the state
in dot n1 and the state in dot n2,

|ψe

⟩
=

1√
2

(
|n1=1

⟩
+ |n2=1

⟩)
.

Therefore the initial state of the system is determined by the electronic state |ψe

⟩
and the

ground state of the two cavities |GS⟩1,2,

|Ψsys⟩initial = |Ψe⟩ |GS⟩1 |GS⟩2 =
1√
2

(
|n1=1, n2=0⟩+ |n1=0, n2=1⟩

)
|GS⟩1 |GS⟩2 .
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1 Introduction and Theoretical background

To determine the time evolution operator of |Ψsys⟩initial we consider the Schrödinger equation
with a reduce Hamiltonian

i~
∂ |Ψsys⟩
∂t

= Hred |Ψsys⟩ .

Neglecting the interaction with the leads, the new Hamiltonian contains only the dots, cavities
and dot-cavity coupling. The time evolution operator becomes

U(t) = D1[n1α1(t)]×D2[n2α2(t)] ,

whereby Di[niαi(t)] is the coherent displacement operator and αi(t) is a coherent state. Now
we are able to consider the time evolution of the initial state of the system.

|Ψsys(t)⟩ =U(t) |Ψsys⟩initial =
1√
2

(
|n1=1, n2=0⟩ |α1(t)⟩ |GS⟩2 + |n1=0, n2=1⟩ |GS⟩1 |α2(t)⟩2

)
The correlation of the two dots, due to the possibility of the electron to travel through both
branches, is extended to the two cavities. This result indicates the possibility of an entangled
state of the two cavities. This entangled state can remain even when the electron leaves the
system.

1.6 Proceeding and Structure of the Work

We would like to investigate correlation in the system of two parallel quantum dots coupled to
two microwave cavities. To achieve this we calculate the covariance of the two cavities a and b,

C = ⟨nanb⟩ − ⟨na⟩ ⟨nb⟩ .

If this quantity is non-zero we can conclude that the two cavities are correlated.

We proceed as follows: We use the Keldysh Greens functions techniques and carry out the
perturbative expansion of the system up to fourth order by choosing the dot-cavity coupling as
perturbation.

The covariance contain photon creation and annihilation operators at equal times for instance
⟨na⟩ =

⟨
a†(t)a(t)

⟩
. Since we consider a full time-ordered expression to do the perturba-

tive expansion, it is necessary to reach the quantity na =
⟨
a†(t)a(t)

⟩
from the expression⟨

Tc
(
a†(t)a(t′)

)⟩
. This quantity correspond to the so called lesser Greens function in the dia-

gramatic language.

This lesser function contains, due to the application of Wick's theroem, the unperturbed bosonic
Green's functions of the two cavities and the fermionic Green's functions of the noninteracting
tunneling model which are integrated over contour times. We determine the fermionic Green's
functions using the Dyson equation and consider the dot-lead coupling as perturbation.

In the next step we transform the integration back to real time space and subsequently to
the frequency space. We perform the integration analytically up to a certain point where the
method should be changed to a numerical integration. So in the end we have developed an
expression that is the starting point for a numerical integration and analysis.
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In a �rst step we introduce a method to determine easily the energy dependent retarded and
advanced Green's functions of the dot-lead system. Since the dot-cavity system is more com-
plicated we introduce time-ordered Green's functions and consider them in an equilibrium and
non-equilibrium system. We introduce a closed time path, which is also denoted as contour,
and show that the transformation to the interaction picture is equal for Green's functions de-
�ned by �eld operators depending on real times or contour times. We develop the perturbative
theory on this contour and introduce the so called Wick theorem, to handle the terms of the
perturbative expansion easier.

2.1 Real Time Green's Functions of Double-Dot Aharonov-Bohm

Interferometer

One common used Green's function approach is the de�nition of the Green's function as the
inverse of a di�erential operator[4]. It is possible to apply this approach to the Schrödinger
equation, since it is a second order di�erential equation. To keep it simple we start with
an electron in a one-dimensional problem. The Schrödinger equation and the corresponding
electron Green's function read

H(x)Ψ(x) = EΨ(x), and [E −H(x)]G(x, x′) = δ(x− x′) .

To distinguish the retarded Green's function, that corresponds to the propagation of an electron
forward in time, and the advanced Green's function, that corresponds to the propagation of
an electron backwards in time, we insert an in�nitesimal imaginary part ±iη in the energy,
whereby the ± corresponds to the retarded or advanced Green's function. The de�nition of the
Green's function, according to a Hamiltonian H = H0 + V , becomes

Gr,a(E) = lim
η→0

[(E ± iη)1−H0 − V ]−1 . (2.1)

In the considered system of the two quantum dots within the Aharonov-Bohm structure we
are dealing with a Hamiltonian containing the two dots, the two leads and the tunneling. The
unperturbed Hamiltonian contains only the dots and leads.

Unperturbed Retarded and Advanced Green's Functions

The unperturbed retarded and advanced Green's function now can be calculated with

gr,a(E) = lim
η→0

[(E ± iη)1−H0]
−1 . (2.2)

We include the in�nitesimal imaginary part in a retarded and advanced energy as Er,a = E±iη.
The unperturbed Hamiltonian of the fermionic system is

H0 =


ε1 0 0 0
0 ε2 0 0
0 0 εkL 0
0 0 0 εkR


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2 Green's Functions and Perturbation Theory

and therefore the unperturbed retarded and advanced Green's functions read

gr,a(E) =


(Er,a − ε1)−1 0 0 0

0 (Er,a − ε2)−1 0 0
0 0 (Er,a − εkL)−1 0
0 0 0 (Er,a − εkR)−1

 . (2.3)

Full Retarded and Advanced Green's Function

To determine the retarded and advanced Green's function of the complete system that is de-
scribed by the Hamiltonian H = H0 + V we resort to Dysons equation. This equation can be
obtained if we transform Eq.(2.1) and insert Eq.(2.2) [4].

Gr,a(E) = gr,a(E) + gr,a(E)V Gr,a(E)

The perturbation V which describes the dot-lead coupling reads

V =


0 0 t1L t1R
0 0 t2L t2R
tL1 tL2 0 0
tR1 tR2 0 0

 . (2.4)

The di�erent components of the Green's function can be calculated using

Gr,a
ij (E) =g

r,a
ij (E) +

∑
lm

gr,ail (E)VlmG
r,a
mj(E) (2.5)

whereby l,m = 1, 2, L,R. Since gr,a is diagonal, the �rst addend of Eq.(2.5) vanishes for all
o�-diagonal elements i ̸= j. The sum over l,m = 1, 2, L,R can be reduced to only two terms.
Again, due to the diagonal form of the unperturbed Green's function, gr,ail is zero if l ̸= i and in
this case the complete sum vanishes. Therefore l is determined through the initial index i and
the sum reduces to a summation over m. The perturbation, or tunneling, Vlm gives only then a
contribution if one of its indices corresponds to a dot and the other to a lead, compare Eq.(2.4).
Since the �rst index l is already �xed with a dot- or lead-index i we get only two terms. We
sum over m = L,R if i ∈ 1, 2 or m = 1, 2 if i ∈ L,R. This leads to eight interdependent
equations fo the dots, i, j ∈ 1, 2 and dot-leads, i ∈ L,R and j ∈ 1, 2. We eliminate the dot-lead
Green's functions by inserting their equations inside the equations of the dots. We summarize
�rst after the factors gr,aLL and gr,aRR and then after the di�erent Green's functions. Next, we
insert the expression of tij.

Gr,a
11 =gr,a11 + gr,a11

(
gr,aLL · t

2 + gr,aRR · t
2
)
Gr,a

11 + gr,a11

(
gr,aLL · t

2ei
φ
2 + gr,aRR · t

2e−i
φ
2

)
Gr,a

21 (2.6)

Gr,a
22 =gr,a22 + gr,a22

(
gr,aLL · t

2 + gr,aRR · t
2
)
Gr,a

22 + gr,a22

(
gr,aLL · t

2e−i
φ
2 + gr,aRR · t

2ei
φ
2

)
Gr,a

12 (2.7)

Gr,a
12 = gr,a11

(
gr,aLL · t

2 + gr,aRR · t
2
)
Gr,a

12 + gr,a11

(
gr,aLL · t

2ei
φ
2 + gr,aRR · t

2e−i
φ
2

)
Gr,a

22 (2.8)

Gr,a
21 = gr,a22

(
gr,aLL · t

2 + gr,aRR · t
2
)
Gr,a

21 + gr,a22

(
gr,aLL · t

2e−i
φ
2 + gr,aRR · t

2ei
φ
2

)
Gr,a

11 (2.9)
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We de�ne that ΓR = ΓL = Γ
2
and use the wideband approximation for the leads so that

gr,aii t
2
i = ∓iΓi with i = L,R [4]. Consequently gr,aLLt

2 + gr,aRRt
2 = ∓iΓL ∓ iΓR = ∓iΓ. Then we

sort the equations according Gr,a
ij with i, j = 1, 2.

Gr,a
11

(
ER,A − ε1 ± iΓ

)
=1∓ iΓ · cos φ

2
Gr,a

21 (2.10)

Gr,a
22

(
ER,A − ε2 ± iΓ

)
=1∓ iΓ · cos φ

2
Gr,a

12 (2.11)

Gr,a
12

(
ER,A − ε1 ± iΓ

)
=∓ iΓ · cos φ

2
·Gr,a

22 (2.12)

Gr,a
21

(
ER,A − ε2 ± iΓ

)
=∓ iΓ · cos φ

2
·Gr,a

11 (2.13)

Since the diagonal Green's functions depend on an o�-diagonal and vice versa, we insert them
into each other and obtain the �nal expression of the retarded and advanced Green's functions.

Gr,a
11 =

Er,a − ε2 ± iΓ
(Er,a − ε1 ± iΓ) (Er,a − ε2 ± iΓ) + Γ2 cos2 φ

2

(2.14)

Gr,a
21 =

∓iΓ · cos φ
2

(Er,a − ε1 ± iΓ) (Er,a − ε2 ± iΓ) + Γ2 cos2 φ
2

(2.15)

Gr,a
22 =

Er,a − ε1 ± iΓ
(Er,a − ε2 ± iΓ) (Er,a − ε1 ± iΓ) + Γ2 cos2 φ

2

(2.16)

Gr,a
12 =

∓iΓ · cos φ
2

(Er,a − ε2 ± iΓ) (Er,a − ε1 ± iΓ) + Γ2 cos2 φ
2

(2.17)

2.2 Formalism of the Keldysh Green's Functions and Perturbation

Theroy

The retarded and advanced Green's function that we have calculated for the double-dot Aharonov-
Bohm interferometer depends on the energy E. To develop the perturbation formalism we de�ne
the Green's functions in time domain. We replace the real-time axis by a closed time contour
and transform the Green's functions from real-time arguments to contour-times. Then we de-
velop the perturbative expansion of the contour-ordered Green's functions and introduce Wick's
theorem, which simpli�es the calculation of a string of �eld operators. The energy dependet
Green's functions can be obtained by a Fourier transformation of the time-dependet Green's
functions. The following sections are close to sec. 3.3 to 4.3.3 of [3].

The Hamiltonian of our system is composed by an noninteracting part H0 and an interacting
part H(i)

H = H0 +H(i) .

We use the second quantization formalism to represent the time-ordered Green's function,
whereby the time arguments correspond to the general real-time axis

G(x, t, x′, t′) = −i
⟨
TΨH(x, t)Ψ

†
H(x

′, t′)
⟩

. (2.18)

The expectation value is evaluated for an arbitrary state described by the statistical operator
ρ and the notation means ⟨...⟩ = Tr(ρ...). The �eld operators ψH(x, t) are de�ned in the
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Heisenberg picture with respect to Hamiltonian H. T is the time ordering operator and orders
the creation and annihilation operators according to their argument. The operator with the
larger argument is placed to the left. In the case that it's known which time argument is larger
or smaller we can de�ne the corresponding greater and lesser Green's function.

G(x, t, x′, t′) =

{
G<(x, t, x′, t′) = −i

⟨
ΨH(x, t)Ψ

†
H(x

′, t′)
⟩
t′ > t

G>(x, t, x′, t′) = ±i
⟨
Ψ†H(x

′, t′)ΨH(x, t)
⟩
t′ < t

whereby the upper sign of G> corresponds to Fermions and the lower one to Bosons. To
complete the di�erent Green's functions we introduce the anti-time-ordered Green's function

G̃(x, t, x′, t′) =
⟨
T̃ΨH(x, t)Ψ

†
H(x

′, t′)
⟩

whereby T̃ orders the arguments reverse to T .

Green's Functions of a System in Equilibrium

At the beginning we consider the case of a system in thermal equilibrium. The statistical op-
erator ρ becomes the Boltzman statistical operator ρ = e−H0/kT/ Tr

(
e−H0/kT

)
and the Green's

functions become

G(x, t, x′, t′) = −i
⟨
TΨH0(x, t)Ψ

†
H0
(x′, t′)

⟩
= Tr

(
e−H0/kTΨH0(x, t)Ψ

†
H0
(x′, t′)

Tr (e−H0/kT )

)
.

The Green's functions depend only on the di�erence of the time arguments t−t′. As it was said
before we can perform a Fourier transformation to pass from the time domain to the energy
space with

G(x, t, x′, t′) =

∫
dp

(2π)3

∫
dE

2π
ei(p(x−x

′)−E(t−t′))G(p,E) .

Extension of the System to the Non-Equilibrium

Now we extend the system to the non-equilibrium. First we consider a system that is completely
described by the Hamiltonian H0. To characterize the non-equilibrium state we assume that
the system was at a time t < t0 in equilibrium at temperature T . The state of the system at
time t0 is therefore described through

ρ(H0) =
e−H0/kT

Tr (e−H0/kT )
. (2.19)

At time t > t0 an additional perturbation H i is applied to the system. The Hamiltonian that
describes the system changes to

H = H0 +H i .

Using the time evolution operator U(t, t0) = Te
−i

∫ t
t0

dt̄H(t) we are able to develop the new state
of the system ρ(t) = U(t, t0)ρ(H0)U

†(t, t0).
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Green's Functions of a System in the Ground State and Transformation to the
Interaction Picture

To introduce the closed time contour and the perturbation theory for zero temperature we
consider the system in the ground state |G⟩. The Green's function reads in detail

G(x, t, x′, t′) = −i
⟨
TΨH(x, t)Ψ

†
H(x

′, t′)
⟩
= −i ⟨G|TΨH(x, t)Ψ

†
H(x

′, t′) |G⟩ . (2.20)

The �eld operators ΨH(x, t) are now in the Heisenberg picture with respect to H. We transform
the �eld operators to the Heisenberg picture wit respect to H0 which is called the interaction
picture.

The �eld operators can be represented as ψH(x, t) = U †(t, tr)ψH0(x, t)U(t, tr) (2.21)

with ψH0(x, t) = eiH0(t−tr)ψH0(x)e
−iH0(t−tr) and U(t, tr) = Te−i

∫ t
tr

dt̄H
(i)
H0

(t̄)

whereby H(i)
H0
(t) = eiH0(t−tr)H(i)e−iH0(t−tr) .

We replace the �eld operators in Eq.(2.20) with the representation of Eq.(2.21). Using several
properties of the evolution operator and choose the reference time, where the operators in the
Heisenberg and Schrödinger pictures coincide, to in�nity we obtain

G(x, t, x′, t′) = −i
⟨
U †(∞,−∞)T (ψH0(x, t)ψ

†
H0
(x′, t′)U(∞,−∞)

⟩
whereby the average is evaluated in the ground state. We assume that the interaction is
turned on and o� adiabatically. This can be reached by replace H

(i)
H0
(t) with eϵ|t|H

(i)
H0
(t).

In the limit lim ϵ→ 0 the ground state transforms to |G⟩ϵ = Uϵ(0,∞) |G0⟩ = eiΦ |G0⟩ with
eiΦ ⟨G0|Uϵ(∞,−∞) |G0⟩. Therefore the time-ordered Green's functions reads

G(x, t, x′, t′) = −i
⟨G0|T (ψH0(x, t)ψ

†
H0
(x′, t′)U(∞,−∞) |G0⟩

⟨G0|Uϵ(∞,−∞) |G0⟩
.

Approach of a Closed Time Contour

Another way is to calculate on a closed time contour. We perform again the unitary transfor-
mations of an operator between the Heisenberg picture with respect to H and the Heisenberg
picture with respect to H0 with the equations

OH(t) =V
†(t, t0)OH0(t)V (t, t0) with V (t, t0) = Te

−i
t∫

t0

t̄Hi(t̄)

(2.22)

and H i
H0
(t) =U †H0

(t, t0)HiUH0(t, t0) with UH0(t, t0) = e−iH0(t−t0) .

If we compare this transformation with those from the Schrödinger picture

OH(t) = U †H(t, t0)UH0(t, t0)OH0(t)U
†
H0
(t, t0)UH(t, t0) with UH(t, t0) = Te

−i
∫ t
t0

t̄H(t̄)

we can identify the equality

V (t, t0) = U †H0
(t, t0)UH(t, t0) which reads in detail Te−i

∫ t
t′ dt̄H

i
H0

(t̄) = eiH0(t−t0)Te−i
∫ t
t′ dt̄H(t̄) .
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2 Green's Functions and Perturbation Theory

Now we introduce a closed time path which is called contour ct. It starts at t0, pass along
the real-time axis to time t and then back to t0. The new contour ordering operator Tct
orders products of operators according to their time argument on the closed contour, whereby
operators with greater time arguments, which means later on the contour, are placed to the left.
To show an equivalence between the transformation of operators with real time arguments and
contour times we show that the transformation between the Heisenberg pictures with respect
to H and H0 can also be expressed through a transformation on the closed contour

OH(t) = Tcte
−i

∫
ct

dτHi
H0

(τ)

OH0(t) . (2.23)

To show the equivalence one expands the exponential function as a sum

OH(t) =
∞∑
n=0

(−i)n

n!

∫
ct

dτ1· · ·
∫
ct

dτnTct ,

splits the contour into a forward and a backward part ct =
−→c +←−c , expands and summarizes

the terms in a new way and obtain

Tcte
−i

∫
ct

dτHi
H0

(τ)

OH0(t) = T←−c e
−i

∫
←−c

dτHi
H0

(τ)

OH0(t)T−→c e
−i

∫
−→c

dτHi
H0

(τ)

. (2.24)

Now we parametrize the contour according τ(t′) = t′ with t′ ∈ [t0, t] and connect the contour
times with real times. When we consider the expressions of Eq.(2.24) with the parametrized
times and compare it to Eq.(2.22) we can identify V (t, t0).

T←−c e
−i

∫
←−c

dτHi
H0

(τ)

= Te
−i

t∫
t0

dt′Hi
H0

(t′)

= V (t, t0) T−→c e
−i

∫
−→c

dτHi
H0

(τ)

= Te
i

t∫
t0

dt′Hi
H0

(t′)

= V †(t, t0) .
(2.25)

The contour ordering operator corresponds to the normal time ordering, T−→c = T , and the anti-
time-ordering to T←−c = T̃ . Due to te equivalences in Eq.(2.25) one can conclude that the times
in V (t, t0) corresponds to the contour times on the forward part −→c and V †(t, t0) corresponds
to contour times on the backward part ←−c .

Green's Functions on a Closed Time Path

Now we use Eq.(2.23) to transform the �eld operators in the time-ordered Green's functions
and therefore develop the contour-ordered Green's functions. The one-particle Green's function
contains two �eld operators with two di�erent real-time arguments t1 and t1′ . Again we resort
to the closed time contour which starts at t0 pass along the real time axis, now trough t1 and
t1′ , then to time t and back to t0. Since we have between t0 and t on the real time axis the two
time arguments t1 and t1′ , each of them has two possibilities to be placed on the contour. We
name the corresponding contour times τ1 and τ1′ and regard a Green's function which has its
time arguments on the contour and is therefore called contour-ordered Green's function

G(x1, τ1, x1′ , τ1′) = −i
Tr(e−H/kTTc(ψH(x1, τ1)ψ

†
H(x1′ , τ1′)))

Tr(e−H/kT )
.
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The contour ordering symbol orders, as said before, the �eld operators according to their contour
time argument. Therefore we can also introduce a greater and lesser contour-ordered Green's
function, whereby we used the abbreviation 1 = x1, τ1 and 1′ = x1′ , τ1′ .

G(1, 1′) = −i
⟨
Tc(ψ(x1, τ1)ψ

†(x1′τ1′)
⟩
=

{
−i
⟨
ψ(x1, τ1)ψ

†(x1′ , τ1′)
⟩
= G>(1, 1′) τ1

c
> τ1′

±i
⟨
ψ†(x1′ , τ1′)ψ(x1, τ1)

⟩
= G<(1, 1′) τ1′

c
< τ1

We apply the transformation of Eq.(2.23) to the �eld operators in the contour-ordered Green's
function and transform them from the Heisenberg picture with respect to H to the Heisenberg
picture with respect to H0. To use the same procedure we expand the contour in such a way,
that both of the two time arguments τ1 and τ1′ lay on a turning point of the contour. This
can be done by introducing a contour that goes from t0 to min(t1, t1′) and back to t0 and then
again from t0 to max (t1, t1′) and back to t0. Therefore we included a closed contour part from
t0 to min(t1, t1′) and back to t0, that is equal to U †(min(t1, t1′), t0)U(min(t1, t1′), t0)=1. The
complete contour is the sum of the minimal and maximal contour c = cmin + cmax and the
contour-ordered Green's function becomes

G(1, 1′) = −i
⟨
Tc

(
ψH(1)ψ

†
H(1

′)
)⟩

= −i
⟨
Tc

(
e−i

∫
c dτH

i
H0

(τ)ψH0(1)ψ
†
H0
(1′)
)⟩

.

As an additional property one can include the closed contour part equal to
U †(max(t1, t1′),∞)U(max(t1, t1′),∞)=1 and expand the contour to in�nity.

Non-equilibrium Perturbation Theory of the Keldysh Green's Functions

Now we are able to develop the perturbation theory for the contour-ordered Green's functions.
We transform the �eld operators in the interaction picture, using the transformation of Eq.(2.23)
and obtain with β = 1/kT

G(1, 1′) = −i
Tr

(
e−βHTc

(
e
−i

∫
c dτ

(
H

(i)
H0

(τ)
)
ψH0(1)ψ

†
H0
(1′)

))
Tr(e−βH)

. (2.26)

To obtain an expression that is completely in the interaction picture we have to transform the
statistical operator ρ as well. To make it work we need an imaginary time-evolution operator
and therefore the contour has to be extended into to complex time plane from t0 to t0 − iβ [5]
that we denote as ca,

e−βH = e−βH0Tcae
−i

∫
ca

dτH
(i)
H0

(τ)

. (2.27)

We insert the transformation of Eq.(2.27) in the contour-ordered Green's function (2.26). In ad-
dition we insert the identity operator in terms of the closed contour contribution Tc(e

−i
∫
c dτ(H

i
H0

(τ))) =
1 in the denominator. The integration over the whole contour leads to the identity operator
because no operators interrupts it[3]. We obtain

G(1, 1′) = −i
Tr

(
e−βH0

(
Tcae

−i
∫
ca

dτH
(i)
H0

(τ)
)
Tc

(
e
−i

∫
c
dτH

(i)
H0

(τ)
ψH0(1)ψ

†
H0
(1′)

))

Tr

(
e−βH0Tcae

−i
∫
ca

dτH
(i)
H0

(τ)

Tc

(
e
−i

∫
c
dτH

(i)
H0

(τ)
)) . (2.28)
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2 Green's Functions and Perturbation Theory

To simplify Eq.(2.28) we introduce the contour ci = c+ca, that consists of the general closed time
contour and the additional part in the imaginary time plane and summarize the exponential
functions. Since we don't consider transient phenomena we set t0 in the far past to minus
in�nity t0 = −∞. In this case we can neglect the imaginary contour part ca compared with c
and obtain the �nal expression

G(1, 1′) = −i
Tr

(
ρ0Tc

(
e
−i

∫
c
dτH

(i)
H0

(τ)
ψH0(1)ψ

†
H0
(1′)

))
Tr

(
Tc

(
e
−i

∫
c
dτH

(i)
H0

(τ)
)) (2.29)

with

ρ0 =
e−H0/kT

Tr (e−H0/kT )
.

Wick's Theorem

If we expand the exponential function for the perturbative expansion we obtain products of
the interaction Hamiltonian. Since the interaction Hamiltonian also contains �eld operators
this leads to products of fermionic or bosonic �eld operators. The trace over the bosonic and
fermionic operators can be separated since they are independent. To calculate the average of
a long chain of �eld operators we use Wick's theorem, which enables to decompose a contour-
ordered string of creation and annihilation operators, derived from a quadratic Hamiltonian,
into a sum over all possible pairwise products⟨

TC
(
c(τn)c(τ(n−1)) . . . c(τ2)c(τ1)

)⟩
=
∑
a.p.p.

∏
q, q′ ⟨Tct (cq(τ)cq′(τ ′))⟩ .

We sum over all possible ways of picking pairs (a.p.p.) of the n operators and don't take into
account the ordering within a pair[3]. The coe�cients ”c” represent either a creation or an
annihilation operator, whereby the index "q" denotes the state of the particle.

With the bosonic �eld operators ϕ and the fermionic �eld operators ψ we can specify Wick's
theorem for the case of a fermionic or bosonic chain of operators.

Wick's theorem for bosonic operators:

⟨TC (ϕ(x2n, τ2n)ϕ(x2n−1, τ2n−1) . . . ϕ(x2, τ2)ϕ(x1, τ1))⟩

=
∑
a.p.p.

∏
i̸=j

⟨TC (ϕ(xi, τi)ϕ(xj, τj))⟩ =
∑
a.p.p.

∏
i̸=j

iND0(xi, τi;xj, τj)

Wick's theorem of fermionic operators:

⟨TC (ψ(x2n, τ2n)ψ(x2n−1, τ2n−1) . . . ψ(x2, τ2)ψ(x1, τ1))⟩

=
∑
a.p.p.

∏
i̸=j

(−1)ζP ⟨TC (ψ(xi, τi)ψ(xj, τj))⟩ =
∑
a.p.p.

∏
i̸=j

(−1)ζP iNG0(xi, τi;xj, τj)
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2.3 Keldysh Green's Functions of Double-Dot Aharonov-Bohm Interferometer

In both cases the last step is only valid if one operator is a creation operator and the other
an annihilation operator. If the expression contains an odd number of creation or annihilation
operators it is zero since the number of particles is not conserved. (−1)ζP denotes the number
of transpositions of operators, since each change of two fermionic operators add a factor of −1.
The denominator of Eq.(2.29) is important since it cancels all disconnected diagrams that
appear due to the perturbative expansion and Wick's theorem.

2.3 Keldysh Green's Functions of Double-Dot Aharonov-Bohm

Interferometer

So far we have introduced the time dependent Green's functions and de�ned the statistical
operator ρ. We considered the case of an Hamiltonian containing a noninteracting and an
interacting. To develop the perturbation theory of the Green's functions we have transformed
the �eld operators to the interaction picture and replaced their real time arguments with contour
times. The perturbative expansion turned out to be an expansion of an exponential function,
containing an integration of the interaction and perturbation Hamiltonian over the Keldysh
contour. The emerging average of a chain of �eld operators can be calculated by Wick's
theorem with a multiplication of unperturbed Green's functions.

The time arguments of these Green's functions lay on the Keldysh contour. There are four
possibilities to distribute the two arguments on the two branches. This leads in principle to
four di�erent Green's functions that are analogue to the (real-) time-ordered Green's functions
of Eq.(2.18).

We denote the upper branch with + and the lower one with − and introduce the matrix Green's
function Ĝij whereby the index ij refers to the dots 1 and 2 and the leads R and L.

The matrix Green's function is de�ned as [3]

Ĝij =

(
G++

ij G+−
ij

G−+ij G−−ij

)
(2.30)

with

G++
ij =

⟨
Tc
(
ci(t)c

†
j(t
′)
)⟩

G+−
ij =

⟨
ci(t)c

†
j(t
′)
⟩

(2.31)

G−−ij =
⟨
T̃c
(
ci(t)c

†
j(t
′)
)⟩

G−+ij =
⟨
c†j(t

′)ci(t)
⟩
. (2.32)

2.3.1 Unperturbed Greater and Lesser Green's Functions

Since we will need the Keldysh Green's functions of Eq.(2.30) to calculate the covariance we
determine them explicitly for the case of the parallel quantum dot coupled to the two leads.

First we calculated the unperturbed greater and lesser Green's functions g−+,+−(E) based on
the unperturbed retarded and advanced Green's function gr,a(E) of Eq.(2.3) [4]. To calculate
this dependency we consider a general noninteracting system in equilibrium, described by an
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2 Green's Functions and Perturbation Theory

unperturbed Hamiltonian H0. The equilibrium Green's functions depend only on a time di�er-
ence. We consider the lesser Green's function which is relation to the electron distribution in
equilibrium. The lesser Green's function reads

G+−
ij (t− t′) =i

⟨
c†j(t

′)ci(t)
⟩
.

For t = t′ = 0 and i = j we can identify the electron distribution and we consider the Fourier
transformation of G+−

ij (t− t′) at t = t′.

G+−
ii (0) = i

⟨
c†i (0)ci(0)

⟩
= i
⟨
ni

⟩
=

∫
dE

2π
G+−

ii (E)

The electron number
⟨
ni

⟩
is the sum over the occupation probabilities of all electrons which

is the multiplication of the local density of states ρi(E) and the Fermi function f(E)[10]. If
we replace

⟨
ni

⟩
with this integral representation we can identify the energy-depended lesser

function G+−
ii (E),

G+−
ii (0) = i

⟨
ni

⟩
= i

∫
ρi(E)f(E)dE → G+−

ii (E) = 2πiρi(E)f(E) .

We determine the greater function in an analogue way.

G−+ii (0) =− i
⟨
cic
†
i

⟩
= −i

⟨
1− c†ici

⟩
= −i

⟨
1− ni

⟩
= −i

(
1−

⟨
ni

⟩)
=− i

(∫
ρi(E)dE −

∫
ρi(E)f(E)dE

)
=

∫
dE

2π
G−+ii (E)

G−+ii (E) =− 2πiρi(E) (1− f(E))

With an additional, general known relation between the Green's functions, that we will not
derive here, we have three di�erent relations for the equilibrium Green's functions:

Ga(E)−Gr(E) =G+−(E)−G−+(E) (2.33)

G+− = 2πiρi(E)f(E) ∝ f(E) (2.34)

G−+ =− 2πiρi(E) (1− f(E)) ∝ 1− f(E) (2.35)

We insert Eq.(2.34) and (2.35) in the right side of Eq.(2.33). Then we multiply each side either
with the Fermi function f(E) and identify G+−(E) or with 1− f(E) and identify G−+(E).

Ga −Gr = G+− −G−+ = 2πiρi

(Ga −Gr) f = 2πiρif = G+−

(Ga −Gr) (1− f) = 2πiρi (1− f) = G−+
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2.3 Keldysh Green's Functions of Double-Dot Aharonov-Bohm Interferometer

So we can express the lesser and greater Green's functions in equilibrium with the retarded and
advanced Green's functions.

G+−(E) = [Ga(E)−Gr(E)] f(E)

G−+(E) =− [Ga(E)−Gr(E)] [1− f(E)]

The unperturbed system is de�ned in such a way that we don't have interactions. The unper-
turbed greater and lesser functions can therefore be derived from the greater and lesser Green's
functions in equilibrium.

g+−ij (E) =
[
gaij(E)− grij(E)

]
f(E)

g−+ij (E) =−
[
gaij(E)− grij(E)

]
[1− f(E)]

Unperturbed Greater and Lesser Green's Function of the Leads

To determine the unperturbed Green's functions of the leads we investigate what happens to
the Fermi functions. We apply a bias voltage across the system such that the chemical potential
of the leads di�er about µL − µR = eV . We treated the dot-lead coupling as perturbation and
include now the voltage in the unperturbed Hamiltonian by shifting the corresponding chemical
potentials like

µL = eV/2, µR = −eV/2

Due to this the shift of the chemical potential changes only the energy dependence of the
unperturbed Green's functions.

The unperturbed Green's functions of the left lead read:

g+−LL (E − eV/2) = [gaLL(E − eV/2)− grLL(E − eV/2)] f(E − eV/2) (2.36)

g−+LL (E − eV/2) =− [gaLL(E − eV/2)− grLL(E − eV/2)] [1− f(E − eV/2)] (2.37)

The unperturbed Green's functions of the right lead read:

g+−RR(E + eV/2) = [gaRR(E + eV/2)− grRR(E + eV/2)] f(E + eV/2) (2.38)

g−+RR(E + eV/2) =− [gaRR(E + eV/2)− grRR(E + eV/2)] [1− f(E + eV/2)] (2.39)

We still use the wide-band approximation for the leads. Therefore the di�erent energy de-
pendences of ga,rLL and ga,rRR do not disturb. We shorten the notation with fR = f(E+ eV/2) and
fL = f(E − eV/2).

The density of states of a quantum dot with energy level εi reads

ρi(E) = δ(E − εi) . (2.40)

We will see later that this fact will simplify the calculation of the full greater and lesser Green's
functions and it's not necessary to determine the unperturbed ones individual.
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2 Green's Functions and Perturbation Theory

2.3.2 Dyson Equation and Full Green's Functions

If we summarize all terms of the perturbative expansion of a Green's function we can also verify
a Dyson equation for the Keldysh Green's functions [3]. The Dyson equation of the contour
ordered Green's functions reads for each component

Ĝij = ĝij +
∑
lm

ĝilΣ̂lmĜmj .

To determine the lesser and greater function we use the Langreth theroem[2].

G+− =g+− +
(
ĝΣ̂Ĝ

)+−
=g+− + grΣrG+− + grΣ+−Ga + g+−ΣaGa (2.41)

G−+ =g−+ + grΣrG−+ + grΣ−+Ga + g−+ΣaGa (2.42)

We transform Eq.(2.41).

(1− grΣr)G+− =g+−(1 + ΣaGa) + grΣ+−Ga

G+− =g+−(1 + ΣaGa)(1− grΣr)−1 + grΣ+−Ga(1− grΣr)−1

=g+−(grga)−1GrGa +GrΣ+−Ga (2.43)

Since gr,a,+− is diagonal, the multiplication of the three unperturbed Green's functions is also
a diagonal matrix. Therefore the �rst part of Eq.(2.43) vanishes for o�-diagonal elements G+−

ij

with i ̸= j. To determine the diagonal elements G+−
ii with i = 1, 2, L,R, we consider the Green's

functions of the dots and leads separately.

In the case of the dots the product g+−i (gri g
a
i )
−1 with i=1,2 vanish. This is due to the fact

that, according to Eq.(2.3) , the inverse of the retarded and advanced Green's functions are
proportional to E − εi. According to Eq.(2.40) the unperturbed lesser Green's function is
proportional to δ(E− εi). The product of the three unperturbed Green's functions is therefore

g+−i (gri g
a
i )
−1 ∝ δ(E − εi)(E − εi)2 = 0

and therefore the �rst part of Eq.(2.43) also vanish. The same arguments hold for G−+.

For the Green's functions of the leads G+−
ii with i = L,R, one insert the expression of the

unperturbed lesser function of Eq.(2.36) or (2.38) and notes the matrix multiplication of the
�rst term. Since we will only need the greater and lesser Green's functions of the dots the one
of the leads need not further be noted.

So the equation for the fermionic lesser Green's function of the dots reduces to

G+−
ij =

∑
l,m

Gr
ilΣ

+−
lm Ga

mj , (2.44)

with l,m = 1, 2, L,R. The retarded and advanced Green's functions have been determined in
Eq.(2.14) to (2.17). In order to avoid far too complicated calculations we limit the calculation
to the case of symmetric energy levels of the dots ε1 = ε2 = ε. The retarded and advanced
fermionic Green's functions of Eq.(2.14) to (2.17) then become

Gr,a =
1

(E − ε± iΓ)2 + Γ2 cos2 φ
2

(
E − ε± iΓ ∓iΓ cos φ

2

∓iΓ cos φ
2

E − ε± iΓ

)
. (2.45)
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2.3 Keldysh Green's Functions of Double-Dot Aharonov-Bohm Interferometer

The self-energy of the system consists only of the tunneling self energy. The lesser self energy
is determined by the equation [2]

Σ+−
lm =

∑
kα=L,R

V ∗kα,lg
+−
kα Vkα,m . (2.46)

Vkα,l = tkα,l describes the coupling of the leads and the dots. Therefore Vkα,l = 0 if kα = l = L,R
because there is no interaction inside or via the leads. Due to this eq (2.44) of G+−

ij reduces to
a sum over l,m = 1, 2. The elements of the lead-dot coupling in the system of the two parallel
quantum dots are

VL1 = VR2 = V ∗L2 = V ∗R1 = tei
φ
4 and V ∗L1 = V ∗R2 = VL2 = VR1 = te−i

φ
4 .

Using these and Eq.(2.36) and (2.38) for the unperturbed lesser Green's functions, Eq.(2.46)
results in the lesser self energy. The greater self energy can be easily obtained by changing +−
with −+.

Σ+− =iΓ

(
fL + fR e−i

φ
2 fL + ei

φ
2 fR

ei
φ
2 fL + e−i

φ
2 fR fL + fR

)
Σ−+ =iΓ

(
fL + fR − 2 e−i

φ
2 fL + ei

φ
2 fR − 2 cos φ

2

ei
φ
2 fL + e−i

φ
2 fR − 2 cos φ

2
fL + fR − 2

)
Now we are able to calculate the lesser and greater Green's function. For the greater Green's
function one just has to exchange the lesser self-energy with the greater self-energy. We name
the common denominator of Ga ×Gr

|κ|2 :=
(
(E − ε)2 + Γ2

(
1 + cos2

φ

2

))2
− 4Γ4 cos2

φ

2
.

Lesser Green's Function

G+−
11 =

iΓ

|κ|2
[(

(E − ε)2 + Γ2
(
1− cos2

φ

2

))
(fL + fR) + Γ(E − ε) sinφ (fL − fR)

]
G+−

12 =
iΓ

|κ|2
[
(E − ε)2

(
e−i

φ
2 fL + ei

φ
2 fR

)
− Γ2 sin2 φ

2
(fLe

iφ
2 + fRe

−iφ
2 )
]

G+−
21 =

iΓ

|κ|2
[
(E − ε)2

(
ei

φ
2 fL + e−i

φ
2 fR

)
− Γ2 sin2 φ

2
(fLe

−iφ
2 + fRe

iφ
2 )
]

G+−
22 =

iΓ

|κ|2
[(

(E − ε)2 + Γ2
(
1− cos2

φ

2

))
(fL + fR)− Γ(E − ε) sinφ (fL − fR)

]
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Greater Green's Function

G−+11 =
iΓ

|κ|2
[(

(E − ε)2 + Γ2
(
1− cos2

φ

2

))
(fL + fR − 2) + Γ(E − ε) sinφ (fL − fR)

]
G−+12 =

iΓ

|κ|2
[
(E − ε)2

(
e−i

φ
2 fL + ei

φ
2 fR − 2 cos

φ

2

)
− Γ2 sin2 φ

2

(
fLe

iφ
2 + fRe

−iφ
2 − 2 cos

φ

2

) ]
G−+21 =

iΓ

|κ|2
[
(E − ε)2

(
ei

φ
2 fL + e−i

φ
2 fR − 2 cos

φ

2

)
− Γ2 sin2 φ

2

(
fLe

−iφ
2 + fRe

iφ
2 − 2 cos

φ

2

) ]
G−+22 =

iΓ

|κ|2
[(

(E − ε)2 + Γ2
(
1− cos2

φ

2

))
(fL + fR − 2)− Γ(E − ε) sinφ (fL − fR)

]

Time-Ordered Green's Function

The time-ordered Green's function can be calculated with G++ = G+− +Gr.

G++
11 =

iΓ

|κ|2
[ (

(E − ε)2 + Γ2
(
1− cos2

φ

2

))
(fL + fR − 1) + Γ(E − ε) sinφ (fL − fR)

+ (E − ε)
(
Γ2
(
1 + cos2

φ

2

)
+ (E − ε)2

) ]
G++

12 =
iΓ

|κ|2
[
(E − ε)2

(
e−i

φ
2 fL + ei

φ
2 fR

)
− Γ2 sin2 φ

2
(fLe

iφ
2 + fRe

−iφ
2 )

− cos
φ

2

[
(E − ε− iΓ)2 + Γ2 cos2

φ

2

] ]
G++

21 =
iΓ

|κ|2
[
(E − ε)2

(
ei

φ
2 fL + e−i

φ
2 fR

)
− Γ2 sin2 φ

2
(fLe

−iφ
2 + fRe

iφ
2 )

− cos
φ

2

[
(E − ε− iΓ)2 + Γ2 cos2

φ

2

] ]
G++

22 =
iΓ

|κ|2
[ (

(E − ε)2 + Γ2
(
1− cos2

φ

2

))
(fL + fR − 1)− Γ(E − ε) sinφ (fL − fR)

+ (E − ε)
(
Γ2
(
1 + cos2

φ

2

)
+ (E − ε)2

) ]

Anti-Time-Ordered Green's Function

The anti-time-ordered Green's function can be calculated with G−− = G+− −Ga.

G−−11 =
iΓ

|κ|2
[ (

(E − ε)2 + Γ2
(
1− cos2

φ

2

))
(fL + fR − 1) + Γ(E − ε) sinφ (fL − fR)

− (E − ε)
(
Γ2
(
1 + cos2

φ

2

)
+ (E − ε)2

) ]
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G−−12 =
iΓ

|κ|2
[
(E − ε)2

(
e−i

φ
2 fL + ei

φ
2 fR

)
− Γ2 sin2 φ

2
(fLe

iφ
2 + fRe

−iφ
2 )

− cos
φ

2

[
(E − ε+ iΓ)2 + Γ2 cos2

φ

2

] ]
G−−21 =

iΓ

|κ|2
[
(E − ε)2

(
ei

φ
2 fL + e−i

φ
2 fR

)
− Γ2 sin2 φ

2
(fLe

−iφ
2 + fRe

iφ
2 )

− cos
φ

2

[
(E − ε+ iΓ)2 + Γ2 cos2

φ

2

] ]
G−−22 =

iΓ

|κ|2
[ (

(E − ε)2 + Γ2
(
1− cos2

φ

2

))
(fL + fR − 1)− Γ(E − ε) sinφ (fL − fR)

− (E − ε)
(
Γ2
(
1 + cos2

φ

2

)
+ (E − ε)2

) ]

Keldysh Green's Function

To complete the contour-ordered Green's functions we calculate the Keldysh Green's function
GK = G+− +G−+.

GK
11 =

2iΓ

|κ|2
[(

(E − ε)2 + Γ2
(
1− cos2

φ

2

))
(fL + fR) + Γ(E − ε) sinφ (fL − fR)

]
GK

12 =
2iΓ

|κ|2
[
(E − ε)2

(
e−i

φ
2 fL + ei

φ
2 fR − cos

φ

2

)
− Γ2 sin2 φ

2

(
fLe

iφ
2 + fRe

−iφ
2 − cos

φ

2

) ]
GK

21 =
2iΓ

|κ|2
[
(E − ε)2

(
ei

φ
2 fL + e−i

φ
2 fR − cos

φ

2

)
− Γ2 sin2 φ

2

(
fLe

−iφ
2 + fRe

iφ
2 − cos

φ

2

) ]
GK

22 =
2iΓ

|κ|2
[(

(E − ε)2 + Γ2
(
1− cos2

φ

2

))
(fL + fR)− Γ(E − ε) sinφ (fL − fR)

]

2.4 Bosonic Green's Functions of a Single Microwave Cavity

For the calculation of the bosonic Green's functions we need the time evolution of the bosonic
operators. The Hamiltonian for the noninteracting case of the bosonic resonator b is

H0 =~ωbb
†b .

We insert the time-evolution of the annihilation operator in the Heisenberg picture in the
equation of motion and determine the time depended creation and annihilation operators and
continue again with ~ = 1.

b(t) =eiH0tbe−iH0t

i∂tb(t) = [b(t), H0] = eiH0t [b,H0] e
−iH0t = eiH0tωbbe

−iH0t = ωbb(t)

b(t) =e−iωbtb, b†(t) = eiωbtb† (2.47)
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2 Green's Functions and Perturbation Theory

Bosonic Green's Functions in Time Domain

Now it's easy to calculate the bosonic Green's functions in time domain. We insert the time
depended bosonic operators of Eq.(2.47) in the formulas of the bosonic Green's functions which
are equal to the fermionic one of Eq.(2.31) and (2.32) by replacing the fermionic with the
bosonic operators.

D+−
b (t, t′) =− i

⟨
b†t′bt

⟩
0
= −iei(ωbt

′−ωbt)
⟨
b†b
⟩
0
= −ie−iωb(t−t′)nb

D−+b (t, t′) =− i
⟨
btb
†
t′

⟩
0
= −iei(ωbt

′−ωbt)
⟨
bb†
⟩
0
= −ie−iωb(t−t′)(nb + 1)

D++
b (t, t′) =− i

⟨
T (b†t′bt)

⟩
0
= −Θ(t− t′)i

⟨
btb
†
t′

⟩
−Θ(t′ − t)i

⟨
b†t′bt

⟩
= Θ(t− t′)D−+b (t, t′) + Θ(t′ − t)D+−

b (t, t′)

D−−b (t, t′) =− i
⟨
T (b†t′bt)

⟩
0
= −Θ(t′ − t)i

⟨
btb
†
t′

⟩
−Θ(t− t′)i

⟨
b†t′bt

⟩
= Θ(t′ − t)D−+b (t, t′) + Θ(t− t′)D+−

b (t, t′)

Bosonic Green's Functions in Energy Space

To obtain the bosonic Green's functions in energy space we calculate the Fourier transforma-
tions. For the greater and lesser Green's function it is easy to identify the delta function.

D+−
b (E) =− inb

∫
d(t− t′)ei(t−t′)(E−ωb) = −inbδ(E − ωb)

D−+b (E) =− i(nb + 1)

∫
d(t− t′)ei(t−t′)(E−ωb) = −i(nb + 1)δ(E − ωb)

The time-ordered and anti-time-ordered Green's function contain Heaviside step functions that
change the integration limits. Since the de�nite integrals would be divergent we introduce an
in�nitesimal imaginary part ±iη to solve them. If we consider the limit of η → 0 after we did
the integration we can identify a principle part and a delta function.

D++
b (E) =

∫
d(t− t′)ei(t−t′)E

[
−iΘ(t− t′)e−iωb(t−t′)(nb + 1)− iΘ(t′ − t)e−iωb(t−t′)nb

]
= lim

η→0

[
−i
∫ ∞
0

d(t− t′)ei(t−t′)(E+iη−ωb)(nb + 1) + i

∫ −∞
0

d(t− t′)ei(t−t′)(E−iη−ωb)nb

]
= lim

η→0

[
E − ωb

(E − ωb)2 + η2
− i η

(E − ωb)2 + η2
(2nb + 1)

]
=P

(
1

E − ωb

)
− iπδ (E − ωb) (2nb + 1)
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2.4 Bosonic Green's Functions of a Single Microwave Cavity

D−−b (E) =

∫
d(t− t′)ei(t−t′)E

[
−iΘ(t′ − t)e−iωb(t−t′)(nb + 1)− iΘ(t− t′)e−iωb(t−t′)nb

]
= lim

η→0

[
i

∫ −∞
0

d(t− t′)ei(t−t′)(E−iη−ωb)(nb + 1)− i
∫ ∞
0

d(t− t′)ei(t−t′)(E+iη−ωb)nb

]
= lim

η→0

[
− E − ωb

(E − ωb)2 + η2
− i η

(E − ωb)2 + η2
(2nb + 1)

]
=− P

(
1

E − ωb

)
− iπδ (E − ωb) (2nb + 1)

Bosonic Green's Funktion in Energy Space at T=0

Since we treat the system at T=0 the photon number nb becomes zero. Therefore the bosonic
Green's functions simplify again.

D++
b (E) = P

(
1

E − ωb

)
− iπδ (E − ωb) D+−

b (E) = 0

D−−b (E) =− P
(

1

E − ωb

)
− iπδ (E − ωb) D−+b (E) = −i δ(E − ωb)

The bosonic Green's functions of resonator a can be simply obtained by replacing index b with
a. If we assume a symmetric case with equal frequencies of the two resonators ωa = ωb = ω,
the bosonic Green's functions become equal for both resonators.
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3 Diagrammatic Perturbative Expansion of the Covariance

3 Diagrammatic Perturbative Expansion of the

Covariance

To prove correlation between the mechanical oscillators we calculate the covariance C =
⟨nanb⟩ − ⟨na⟩ ⟨nb⟩ using a perturbative expansion up to the fourth order of the dot-cavity
coupling constant λ. As said before we consider the perturbation to be the dot-cavity coupling.
We assume a symmetric dot-cavity coupling and so λa = λb = λ. Therefore the interaction
Hamiltonian contained in the exponential function, that will be expanded, reads

H(i) = λ(a+ a†)d†1d1 + λ(b+ b†)d†2d2 .

3.1 Derivation of the Covariance From the Time-Ordered Expression

If the covariance is zero, na and nb are uncorrelated. When the sign is positive, the variables
are said to be positively correlated. When the sign is negative, the variables are said to be
negatively correlated.

For the calculation of the covariance we want to make use of the perturbation theory. We have
developed it for the contour-ordered Green's function. Now we show a way how to get from
the full time-ordered expression to the covariance.

We �rst concentrate on ⟨nanb⟩ =
⟨
a†tatb

†
tbt

⟩
and de�ne the function F

F =− i
⟨
Tc

(
AtA

†
t′

)⟩
with the new operators A = ab = ba and A† = a†b† = b†a†. So we get

F = −i
⟨
Tc

(
AtA

†
t′

)⟩
= −i

⟨
Tc

(
atbta

†
t′b
†
t′

)⟩
= −i

⟨
Tc

(
ata
†
t′btb

†
t′

)⟩
.

Depending on which branch the time arguments lie we obtain the four Keldysh components

F =

(
F++ F+−

F−+ F−−

)
.

Now we determine that t lies in the upper branch of the Keldysh contour and t′ lies in the lower
branch. The function F reduces to the lesser function

F+−(t, t′) = −i
⟨
A†t′At

⟩
= −i

⟨
a†t′b

†
t′atbt

⟩
.

Next we converge t′ to t . Since a and b commutate we obtain, after moving at a position
forward, the expression

lim
t′→t

iF+−(t, t′) =
⟨
a†tb
†
tatbt

⟩
=
⟨
a†tatb

†
tbt

⟩
= ⟨nanb⟩ .

The same applies for Da(t, t
′) = −i

⟨
Tc

(
ata
†
t′

)⟩
and Db(t, t

′) = −i
⟨
Tc

(
btb
†
t′

)⟩
for that follows

lim
t′→t

iD+−
a (t, t′) =

⟨
a†tat

⟩
= ⟨na⟩ ,
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lim
t′→t

iD+−
b (t, t′) =

⟨
b†tbt

⟩
= ⟨nb⟩ .

Therefore we can express the covariance through on the full time-ordered Keldysh functions by

lim
t′→t

i
(
F+−(t, t′)−D+−

a (t, t′)D+−
b (t, t′)

)
= ⟨nanb⟩ − ⟨na⟩ ⟨nb⟩

which is equal to

lim
t′→t

i

(⟨
Tc

(
ata
†
t′btb

†
t′

)⟩+−
−
⟨
Tc

(
ata
†
t′

)⟩+− ⟨
Tc

(
btb
†
t′

)⟩+−)
= ⟨nanb⟩ − ⟨na⟩ ⟨nb⟩ . (3.1)

3.2 Color Code and Legend of the Green's Functions and Feynman

Diagrams

We have determined the free fermionic and free bosonic Green's functions in section (2.3.2) and
(2.4) which will appear in the perturbative expansions as factors of longer products. Further
we will represent the terms in Feynman diagrams. To distinguish the fermionic and bosonic
Green's functions we use straight and wiggled lines. To facilitate and clarify the corresponding
components of the Green's functions, in the bosonic case the belonging to the cavities a and b
and in the fermionic case the components ij for i, j = 1, 2, we introduce a color code:

Da: bosonic Green's function of resonator a

Db: bosonic Green's function of resonator b

G11: fermionic Green's function of dot 1

G22: fermionic Green's function of dot 2

G12, G21: o�diagonal elements of the fermionic Green's function corresponding to
dot 1 and 2

The elements of the Feynman diagrams with the same color code like the functions are

: G11, G22, G12, G21

: Da = −i
⟨
Tc

(
at, a

†
t′

)⟩
, Db = −i

⟨
Tc

(
bt, b

†
t′

)⟩
: D̃a = −i

⟨
Tc

(
(at + a†t)(at′ + a†t′)

)⟩
, D̃b = −i

⟨
Tc

(
(bt + b†t)(bt′ + b†t′)

)⟩

3.3 Perturbative Expansion of
⟨
Tc
(
ata
†
t′

)⟩
and

⟨
Tc
(
btb
†
t′

)⟩
First a comment to the notation: The free or unperturbed Green's function is generally denoted
with the index "0" like G0. For reasons of readability we neglect this index 0 and keep in mind,
that the perturbative expansion and the use of Wick's theorem always leads to products of the
free Green's functions.
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3 Diagrammatic Perturbative Expansion of the Covariance

First we are looking for the perturbative expansion of the time-ordered Green's functions of
the single cavities ⟨

Tc

(
ata
†
t′

)⟩
and

⟨
Tc

(
btb
†
t′

)⟩
.

The �rst and third order term of the perturbative expansion become zero, because of the odd
number of operators. We look at the perturbative expansion up to fourth order.

Notation: To use the lower index-position for the time arguments in the perturbative expansion
we change the notation of the fermionic creation and annihilation operators. Dot 1 corresponds
to d and d† and dot 2 corresponds to d̃ and d̃†. In order to facilitate the reading, we denote the
contour times with ti instead of τi. The interaction Hamiltonian becomes

H(i) = λ(a+ a†)d†d+ λ(b+ b†)d̃†d̃

and with α = a, b we expand the functions

iDα(t, t
′) =

⟨
Tc

(
αtα

†
t′

)⟩
= Tr

(
ρ0Tc

(
e−i

∫
C dτH(i)(τ)αtα

†
t′

))
. (3.2)

Zeroth Order

The zeroth order is only the unperturbed or free Green's function⟨
Tc

(
ata
†
t′

)⟩(0)
=
⟨
Tc

(
ata
†
t′

)⟩
= iDa(t, t

′) .

Second Order

The second order contains an integration over the two contour-time arguments t1 and t2. The
multiplication of the four terms in Eq.(3.3) reduces only to the one in Eq.(3.4), since the others
would not conserve the particle number or lead to a disconnected diagram. In Eq.(3.5) we
have separated the trace over the bosonic and fermionic operators. We apply Wick's theorem
and neglected again terms representing disconnected diagrams or tadpoles (see chapter 3.5).
The simpli�cation of Wick's theorem results in Eq.(3.6) where we can identify the bosonic and
fermionic Green's functions to obtain the �nal result in Eq.(3.7).⟨

Tc

(
ata
†
t′

)⟩(2)
=

(−i)2

2

∫
C

dt1

∫
C

dt2

⟨
Tc

(
ata
†
t′

[
λ(a+ a†)d†d+ λ(b+ b†)d̃†d̃

]
t1[

λ(a+ a†)d†d+ λ(b+ b†)d̃†d̃
]
t2

)⟩
(3.3)

=− 1

2

∫
C

dt1

∫
C

dt2

⟨
Tc

(
ata
†
t′

[
λ(at1 + a†t1)d

†
t1dt1

] [
λ(at2 + a†t2)d

†
t2dt2

])⟩
(3.4)

=−
∫
C

dt1

∫
C

dt2 λ
2
⟨
Tc

(
ata
†
t′at1a

†
t2

)⟩⟨
Tc

(
d†t1dt1d

†
t2dt2

)⟩
(3.5)
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=−
∫
C

dt1

∫
C

dt2 λ
2
⟨
Tc

(
ata
†
t2

)⟩⟨
Tc

(
at1a

†
t′

)⟩⟨
Tc

(
d†t1dt2

)⟩⟨
Tc

(
d†t2dt1

)⟩
(3.6)

=

∫
C

dt1

∫
C

dt2 λ
2 Da(t, t2)Da(t1, t

′)G11(t1, t2)G11(t2, t1) (3.7)

Fourth Order

Analogue to the second order, the fourth order term includes the integration over four contour-
time arguments. In order to facilitate the reading we hide the factor of the perturbative
expansion, 1

24

∫
C
dt1
∫
C
dt2
∫
C
dt3
∫
C
dt4(−i)4, and reintroduce it in the end.

The multiplication in Eq.(3.8) includes eight possibilities which conserve the particle number.
Two terms contain only the operators a,a† or b,b†, except for the initial operators ata

†
t′ , and

six terms contain 2 operators of each type. The term containing only operators of resonator b
leads to disconnected diagrams because there is no direct connection between the two resonators.
Since the notation of integration variables, in this case the time arguments, can be changed
the term containing only operators of resonator a leads to six contributions, Eq.(3.9). We
obtain six contributions because Eq.(3.8) leads in this case to a multiplication of the four
brackets containing operators a. An expansion of this leads to terms with di�erent numbers of
creation and annihilation operators. Only terms with two operators of similar type contribute.
Therefore we have two out of four possibilities which corresponds to the six contributions. Due
to the index notation we can summarize them into one. The other six terms, with the mixed
operators, can also be be combined in one term which includes four equal possibilities. For the
same reason as before we have one out of two possibilities for two operator types a and b. This
leads to Eq.(3.10).⟨
Tc

(
ata
†
t′

)⟩(4)
=
⟨
Tc

(
ata
†
t′

[
λ(a+ a†)d†d+ λ(b+ b†)d̃†d̃

]
t1

[
λ(a+ a†)d†d+ λ(b+ b†)d̃†d̃

]
t2

×
[
λ(a+ a†)d†d+ λ(b+ b†)d̃†d̃

]
t3

[
λ(a+ a†)d†d+ λ(b+ b†)d̃†d̃

]
t4

)⟩
(3.8)

=6 λ4
⟨
Tc

(
ata
†
t′at1at2a

†
t3a
†
t4

)⟩⟨
Tc

(
d†t1dt1d

†
t2dt2d

†
t3dt3d

†
t4dt4

)⟩
(3.9)

+24 λ4
⟨
Tc

(
ata
†
t′at1a

†
t2bt3b

†
t4

)⟩⟨
Tc

(
d†t1dt1d

†
t2dt2 d̃

†
t3 d̃t3 d̃

†
t4 d̃t4

)⟩
(3.10)

Application of Wick's Theorem to the Fourth Order Term

In the next step we use Wick's theorem to decompose the equations into products of free Green's
functions. First we apply Wick's theorem to the bosonic parts in Eq.(3.9) and Eq.(3.10). We
neglect the disconnected diagrams and obtain four di�erent terms. Due to the arbitrary notation
of the integration variable we are able to summarize them and obtain in the two cases:

6 λ4
⟨
Tc

(
ata
†
t′at1at2a

†
t3a
†
t4

)⟩
= 24 λ4

⟨
Tc

(
ata
†
t3

)⟩⟨
Tc

(
at1a

†
t′

)⟩⟨
Tc

(
at2a

†
t4

)⟩
=24 λ4(-i)Da(t, t3)Da(t1, t

′)Da(t2, t4) (3.11)
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24 λ4
⟨
Tc

(
ata
†
t′at1a

†
t2bt3b

†
t4

)⟩
= 24 λ4

⟨
Tc

(
ata
†
t2

)⟩⟨
Tc

(
at1a

†
t′

)⟩⟨
Tc

(
bt3b

†
t4

)⟩
=24 λ4(-i)Da(t, t2)Da(t1, t

′)Db(t3, t4) (3.12)

We introduce the non oriented bosonic Green's function:

D̃(t3, t4) = −i
⟨
Tc

(
(bt3 + b†t3)(bt4 + b†t4)

)⟩
= −i

⟨
Tc

(
bt3b

†
t4 + b†t3bt4 + bt3bt4 + b†t3b

†
t4

)⟩
= −i

(⟨
Tc

(
bt3b

†
t4

)⟩
+
⟨
Tc

(
bt4b

†
t3

)⟩
+ ⟨Tc (bt3bt4)⟩︸ ︷︷ ︸

0

+
⟨
Tc

(
b†t3b

†
t4

)⟩
︸ ︷︷ ︸

0

)
= D(t4, t3) +D(t3, t4)

Then we apply Wick's theorem to the fermionic operators. As we applied Wick's theorem to
the bosonic operators we used the possibility to interchange the time variables to combine the
di�erent addends appearing from Wick's theorem. This could also be done here but then the
time arguments of the bosonic Green's functions would also change and the bosonic Green's
functions couldn't be summarized in one term.

As a �rst step we change the time arguments t2 ↔ t3 in Eq.(3.11) and obtain the same sym-
metry regarding the time arguments like in Eq.(3.12). To summarize a few terms we use
the symmetrie t3 ↔ t4 of the fermionic Green's function and combine two terms by inserting
D̃(t3, t4) = D(t4, t3) + D(t3, t4) which is the reason for the factor 2 in Eq.(3.13). The terms
G(t3, t3)G(t4, t4), G(t3, t4)G(t4, t3), G(t1, t1) and G(t2, t2) lead to disconnected diagrams. We
also neglect tadpoles. The fermionic part becomes:⟨

Tc

(
dt1d

†
t1dt2d

†
t2dt3d

†
t3dt4d

†
t4

)⟩
=− 2G(t1, t2)G(t2, t4)G(t3, t1)G(t4, t3)− 2G(t1, t3)G(t2, t1)G(t3, t4)G(t4, t2)

+ 2G(t1, t3)G(t2, t4)G(t3, t1)G(t4, t2)− 2G(t1, t3)G(t2, t4)G(t3, t2)G(t4, t1) (3.13)

To distinguish between Eq.(3.9) and Eq.(3.10) we must note, that the bosonic Green's function
D̃(t3, t4) depends in the �rst equation on resonator a and in the second on resonator b. The
fermionic operators of Eq.(3.9) depend all on dot 1 while Eq.(3.10) contain two operators of
each dot. We add two indices to the fermionic Green's functions that indicate the belonging of
each time argument to the corresponding operator. These indices are equivalent to the indices
ij of Eq.(2.30). To facilitate the reading we used the color code that we have introduces in
section (3.2).

Perturbative Expansion of the Single Cavity A up to Fourth Order

The perturbative expansion up to fourth order reads:

⟨
Tc

(
ata
†
t′

)⟩
≈
⟨
Tc

(
ata
†
t′

)⟩(0)
+
⟨
Tc

(
ata
†
t′

)⟩(2)
+
⟨
Tc

(
ata
†
t′

)⟩(4)
= iDa(t, t

′)
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3.3 Perturbative Expansion of the Single Cavities

+

∫
C

dt1

∫
C

dt2 λ2Da(t, t2)Da(t1, t
′)G11(t1, t2)G11(t2, t1)

− 2i λ4
∫
C

dt1

∫
C

dt2

∫
C

dt3

∫
C

dt4

[
Da(t, t2)Da(t1, t

′)D̃a(t3, t4)G11(t1, t3)G11(t3, t1)G11(t2, t4)G11(t4, t2)

−Da(t, t2)Da(t1, t
′)D̃a(t3, t4)G11(t1, t3)G11(t3, t4)G11(t2, t1)G11(t4, t2)

−Da(t, t2)Da(t1, t
′)D̃a(t3, t4)G11(t1, t3)G11(t3, t2)G11(t2, t4)G11(t4, t1)

−Da(t, t2)Da(t1, t
′)D̃a(t3, t4)G11(t1, t2)G11(t3, t1)G11(t2, t4)G11(t4, t3)

−Da(t, t2)Da(t1, t
′)D̃b(t3, t4)G11(t1, t2)G12(t2, t4)G21(t3, t1)G22(t4, t3)

−Da(t, t2)Da(t1, t
′)D̃b(t3, t4)G12(t1, t3)G11(t2, t1)G22(t3, t4)G21(t4, t2)

+Da(t, t2)Da(t1, t
′)D̃b(t3, t4)G12(t1, t3)G12(t2, t4)G21(t3, t1)G21(t4, t2)

−Da(t, t2)Da(t1, t
′)D̃b(t3, t4)G12(t1, t3)G12(t2, t4)G21(t3, t2)G21(t4, t1)

]
Perturbative Expansion of the Single Cavity B up to Fourth Order

The perturbative expansion of resonator b can be obtained from the one of resonator a by
changing the indices a with b and 1 with 2. The interchange of 1 and 2 is necessary because
the change of operator a with b induces also a change of the corresponding fermionic operator
d with d̃, which correspond to dot 1 and 2.⟨

Tc

(
btb
†
t′

)⟩
≈
⟨
Tc

(
btb
†
t′

)⟩(0)
+
⟨
Tc

(
btb
†
t′

)⟩(2)
+
⟨
Tc

(
btb
†
t′

)⟩(4)
= iDb(t, t

′)

+ λ2
∫
C

dt1

∫
C

dt2 Db(t, t2)Db(t1, t
′)G22(t1, t2)G22(t2, t1)

− 2i λ4
∫
C

dt1

∫
C

dt2

∫
C

dt3

∫
C

dt4

[
Db(t, t2)Db(t1, t

′)D̃b(t3, t4)G22(t1, t3)G22(t3, t1)G22(t2, t4)G22(t4, t2)

−Db(t, t2)Db(t1, t
′)D̃b(t3, t4)G22(t1, t3)G22(t3, t4)G22(t2, t1)G22(t4, t2)

−Db(t, t2)Db(t1, t
′)D̃b(t3, t4)G22(t1, t3)G22(t3, t2)G22(t2, t4)G22(t4, t1)

−Db(t, t2)Db(t1, t
′)D̃b(t3, t4)G22(t1, t2)G22(t3, t1)G22(t2, t4)G22(t4, t3)

−Db(t, t2)Db(t1, t
′)D̃a(t3, t4)G22(t1, t2)G21(t2, t4)G12(t3, t1)G11(t4, t3)

−Db(t, t2)Db(t1, t
′)D̃a(t3, t4)G21(t1, t3)G22(t2, t1)G11(t3, t4)G12(t4, t2)

+Db(t, t2)Db(t1, t
′)D̃a(t3, t4)G21(t1, t3)G21(t2, t4)G12(t3, t1)G12(t4, t2)

−Db(t, t2)Db(t1, t
′)D̃a(t3, t4)G21(t1, t3)G21(t2, t4)G12(t3, t2)G12(t4, t1)

]
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3 Diagrammatic Perturbative Expansion of the Covariance

3.4 Perturbative Expansion of
⟨
Tc
(
ata
†
t′btb

†
t′

)⟩
Now we consider the case of the combined cavities a and b. We are looking for the quantity⟨

Tc

(
AtA

†
t′

)⟩
=
⟨
Tc

(
ata
†
t′btb

†
t′

)⟩
.

The �rst and third order term of the perturbative expansion again become zero, because of the
odd number of operators. We look at the perturbative expansion up to fourth order.⟨

Tc

(
ata
†
t′btb

†
t′

)⟩
≈
⟨
Tc

(
ata
†
t′btb

†
t′

)⟩(0)
+
⟨
Tc

(
ata
†
t′btb

†
t′

)⟩(2)
+
⟨
Tc

(
ata
†
t′btb

†
t′

)⟩(4)

=
⟨
Tc

(
ata
†
t′btb

†
t′

)⟩

+
1

2

∫
C

dt1

∫
C

dt2(−i)2
⟨
Tc

(
ata
†
t′btb

†
t′

[
λ(a+ a†)d†d+ λ(b+ b†)d̃†d̃

]
t1

×
[
λ(a+ a†)d†d+ λ(b+ b†)d̃†d̃

]
t2

)⟩

+
1

24

∫
C

dt1

∫
C

dt2

∫
C

dt3

∫
C

dt4(−i)4
⟨
Tc

(
ata
†
t′btb

†
t′

×
[
λ(a+ a†)d†d+ λ(b+ b†)d̃†d̃

]
t1

[
λ(a+ a†)d†d+ λ(b+ b†)d̃†d̃

]
t2

×
[
λ(a+ a†)d†d+ λ(b+ b†)d̃†d̃

]
t3

[
λ(a+ a†)d†d+ λ(b+ b†)d̃†d̃

]
t4

)⟩

Zeroth Order

The application of Wick's theorem to the zeroth order term leads just to the multiplication of a
bosonic Green's functions of each resonator. The mixed terms vanish since the particle number
of each type (Fermions and Bosons) is not conserved.⟨

Tc

((
ata
†
t′btb

†
t′

))⟩(0)
=
⟨
Tc
(
a(t)a†(t′)

)⟩ ⟨
Tc
(
b(t)b†(t′)

)⟩
= −Da(t, t

′)Db(t, t
′)

Second Order

The second order term includes the factor 1
2

∫
C
dt1
∫
C
dt2(−i)2. We reintroduce it later and keep

in mind that t1 and t2 are integration variables. The multiplication in Eq.(3.14) leads to two
terms that conserve the particle number. Changing the name of the integration variables each
line in Eq.(3.15) leads to two equal terms. We apply Wick's theorem to Eq.(3.16) and neglect
both disconnected and tadpole diagrams to obtain Eq.(3.17). The sign changes from plus to
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3.4 Perturbative Expansion of the Combined Cavities A and B

minus due to the transition changes of position of the fermionic operators. As a last step we
identify the Green's functions get the expression of Eq.(3.18).⟨

Tc

(
ata
†
t′btb

†
t′

[
λ(a+ a†)d†d+ λ(b+ b†)d̃†d̃

]
t1

[
λ(a+ a†)d†d+ λ(b+ b†)d̃†d̃

]
t2

)⟩
(3.14)

=
⟨
Tc

(
ata
†
t′btb

†
t′

[
λ(at1 + a†t1)d

†
t1dt1

] [
λ(at2 + a†t2)d

†
t2dt2

])⟩
+
⟨
Tc

(
ata
†
t′btb

†
t′

[
λ(bt1 + b†t1)d̃

†
t1 d̃t1

] [
λ(bt2 + b†t2)d̃

†
t2 d̃t2

])⟩
(3.15)

=2λ2
⟨
Tc

(
ata
†
t′btb

†
t′at1a

†
t2

)⟩⟨
Tc

(
d†t1dt1d

†
t2dt2

)⟩
+2λ2

⟨
Tc

(
ata
†
t′btb

†
t′bt1b

†
t2

)⟩⟨
Tc

(
d̃†t1 d̃t1 d̃

†
t2 d̃t2

)⟩
(3.16)

=− 2λ2
⟨
Tc

(
ata
†
t2

)⟩⟨
Tc

(
btb
†
t′

)⟩⟨
Tc

(
at1a

†
t′

)⟩
×
⟨
Tc

(
d†t1dt2

)⟩⟨
Tc

(
d†t2dt1

)⟩
− 2λ2

⟨
Tc

(
ata
†
t′

)⟩⟨
Tc

(
btb
†
t2

)⟩⟨
Tc

(
bt1b

†
t′

)⟩
×
⟨
Tc

(
d̃†t1 d̃t2

)⟩⟨
Tc

(
d̃†t2 d̃t1

)⟩
(3.17)

=− 2iλ2Da(t, t2)Da(t1, t
′)Db(t, t

′)G11(t1, t2)G11(t2, t1)

− 2iλ2Da(t, t
′)Db(t, t2)Db(t1, t

′)G22(t1, t2)G22(t2, t1) (3.18)

Fourth Order

Analogue to the calculation of the fourth order perturbation term of the single resonators
it includes the factor 1

24

∫
C
dt1
∫
C
dt2
∫
C
dt3
∫
C
dt4(−i)4. Again the multiplication in Eq.(3.19)

results in eight terms with a conserved particle number. Just like for the single-resonator-
calculation two terms contain only one type of bosonic or the corresponding fermionic operators.
The arbitrary notation leads in this case to six equal expressions as shown in Eq.(3.20) and
Eq.(3.22). The other six terms contain two operators of each type. Due to the arbitrary
notation they can be combined and also include 4 equal expressions and lead to Eq.(3.21).⟨

Tc

(
ata
†
t′btb

†
t′

[
λ(a+ a†)d†d+ λ(b+ b†)d̃†d̃

]
t1

[
λ(a+ a†)d†d+ λ(b+ b†)d̃†d̃

]
t2

×
[
λ(a+ a†)d†d+ λ(b+ b†)d̃†d̃

]
t3

[
λ(a+ a†)d†d+ λ(b+ b†)d̃†d̃

]
t4

)⟩
(3.19)

= 6 λ4
⟨
Tc

(
ata
†
t′btb

†
t′at1at2a

†
t3a
†
t4

)⟩⟨
Tc

(
d†t1dt1d

†
t2dt2d

†
t3dt3d

†
t4dt4

)⟩
(3.20)

+24 λ4
⟨
Tc

(
ata
†
t′btb

†
t′at1a

†
t2bt3b

†
t4

)⟩⟨
Tc

(
d†t1dt1d

†
t2dt2 d̃

†
t3 d̃t3 d̃

†
t4 d̃t4

)⟩
(3.21)

+ 6 λ4
⟨
Tc

(
ata
†
t′btb

†
t′bt1bt2b

†
t3b
†
t4

)⟩⟨
Tc

(
d̃†t1 d̃t1 d̃

†
t2 d̃t2 d̃

†
t3 d̃t3 d̃

†
t4 d̃t4

)⟩
(3.22)
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3 Diagrammatic Perturbative Expansion of the Covariance

Application of Wick's Theorem to the Fourth Order Term

First we apply Wick's theorem to the bosonic part of Eq.(3.20). We neglect again the discon-
nected diagrams and summarize four di�erent pairing possibilites in one term.

6 λ4
⟨
Tc

(
ata
†
t′btb

†
t′at1at2a

†
t3a
†
t4

)⟩
=24 λ4

⟨
Tc

(
btb
†
t′

)⟩⟨
Tc

(
ata
†
t3

)⟩⟨
Tc

(
at1a

†
t′

)⟩⟨
Tc

(
at2a

†
t4

)⟩
=24 λ4Db(t, t

′)Da(t, t3)Da(t1, t
′)Da(t2, t4)

The transformation of Eq.(3.22) leads analog to

6 λ4
⟨
Tc

(
ata
†
t′btb

†
t′bt1bt2b

†
t3b
†
t4

)⟩
= 24 λ4Da(t, t

′)Db(t, t3)Db(t1, t
′)Db(t2, t4) .

Eq. (3.21) has three possibilities to combine the operators and they cannot be summarized.

24 λ4
⟨
Tc

(
ata
†
t′btb

†
t′at1a

†
t2bt3b

†
t4

)⟩
=24 λ4

[⟨
Tc

(
ata
†
t′

)⟩⟨
Tc

(
at1a

†
t2

)⟩⟨
Tc

(
btb
†
t4

)⟩⟨
Tc

(
bt3b

†
t′

)⟩
+
⟨
Tc

(
ata
†
t2

)⟩⟨
Tc

(
at1a

†
t′

)⟩⟨
Tc

(
btb
†
t′

)⟩⟨
Tc

(
bt3b

†
t4

)⟩
+
⟨
Tc

(
ata
†
t2

)⟩⟨
Tc

(
at1a

†
t′

)⟩⟨
Tc

(
btb
†
t4

)⟩⟨
Tc

(
bt3b

†
t′

)⟩]
=24 λ4 [Da(t, t

′)Da(t1, t2)Db(t, t4)Db(t3, t
′) +Da(t, t2)Da(t1, t

′)Db(t, t
′)Db(t3, t4)

+Da(t, t2)Da(t1, t
′)Db(t, t4)Db(t3, t

′)]

Next we apply Wick's theorem to the fermionic expressions. In each case we will obtain terms
similar to Eq.(3.13) or longer. Therefore we waive to specify the individual sums of products
from Wick's theorem and limit ourselves to indicate the used symmetries or simpli�cations.

In Eq.(3.20) and Eq.(3.22) we use the symmetry of t2 ↔ t4 in the fermionic Green's functions
by inserting D̃(t2, t4) = D(t4, t2) +D(t2, t4). The terms G(t2, t2)G(t4, t4) and G(t2, t4)G(t4, t2)
lead to disconnected diagrams.

Wick's theorem applied to the bosonic expression of Eq.(3.21) leaded to three di�erent terms.
For the �rst and second one the terms G(t1, t1)G(t2, t2) and G(t1, t2)G(t2, t1) lead to discon-
nected diagrams. For the �rst term we use the symmetry of t1 ↔ t2 by inserting D̃(t1, t2) =
D(t2, t1) +D(t1, t2). For the second one we use the symmetry t3 ↔ t4 by inserting D̃(t3, t4) =
D(t4, t3)+D(t3, t4). At the third term G(t1, t1)G(t3, t3) and G(t1, t3)G(t3, t1) leads to a discon-
nected diagram and it implies no symmetry.

By the application of Wick's theorem we obtain in the case of Eq.(3.20), the �rst and second
addend of Eq.(3.21) and Eq.(3.22) ten di�erent addends for each term. In each case six terms
represent a disconnected diagrams so only four terms per equation remain. For the third addend
of Eq.(3.21) Wick's theorem leads to twenty terms of which twelve terms drop out and eight
remain. Combined with the zeroth and second order term we obtain the perturbative expansion
of the combined cavities up to fourth order.
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3.4 Perturbative Expansion of the Combined Cavities A and B

Perturbative Expansion of the Combined Cavities A and B up to Fourth Order

⟨
Tc

(
atbta

†
t′b
†
t′

)⟩
≈
⟨
Tc

(
atatb

†
t′b
†
t′

)⟩(0)
+
⟨
Tc

(
atatb

†
t′b
†
t′

)⟩(2)
+
⟨
Tc

(
atatb

†
t′b
†
t′

)⟩(4)

=−Da(t, t
′)Db(t, t

′)

+ iλ2
∫
C

dt1

∫
C

dt2Da(t, t2)Da(t1, t
′)Db(t, t

′)G11(t1, t2)G11(t2, t1)

+ iλ2
∫
C

dt1

∫
C

dt2Da(t, t
′)Db(t, t2)Db(t1, t

′)G22(t1, t2)G22(t2, t1)

+ λ4
∫
C

dt1

∫
C

dt2

∫
C

dt3

∫
C

dt4

[
2Db(t, t

′)Da(t, t2)Da(t1, t
′)D̃a(t3, t4)G11(t1, t3)G11(t3, t1)G11(t2, t4)G11(t4, t2)

− 2Db(t, t
′)Da(t, t2)Da(t1, t

′)D̃a(t3, t4)G11(t1, t3)G11(t3, t4)G11(t2, t1)G11(t4, t2)

− 2Db(t, t
′)Da(t, t2)Da(t1, t

′)D̃a(t3, t4)G11(t1, t3)G11(t3, t2)G11(t2, t4)G11(t4, t1)

− 2Db(t, t
′)Da(t, t2)Da(t1, t

′)D̃a(t3, t4)G11(t1, t2)G11(t3, t1)G11(t2, t4)G11(t4, t3)

+ 2Da(t, t
′)Db(t, t2)Db(t1, t

′)D̃b(t3, t4)G22(t1, t3)G22(t3, t1)G22(t2, t4)G22(t4, t2)

− 2Da(t, t
′)Db(t, t2)Db(t1, t

′)D̃b(t3, t4)G22(t1, t3)G22(t3, t4)G22(t2, t1)G22(t4, t2)

− 2Da(t, t
′)Db(t, t2)Db(t1, t

′)D̃b(t3, t4)G22(t1, t3)G22(t3, t2)G22(t2, t4)G22(t4, t1)

− 2Da(t, t
′)Db(t, t2)Db(t1, t

′)D̃b(t3, t4)G22(t1, t2)G22(t3, t1)G22(t2, t4)G22(t4, t3)

− 2Da(t, t
′)D̃a(t3, t4)Db(t, t2)Db(t1, t

′)G11(t3, t4)G12(t4, t2)G21(t1, t3)G22(t2, t1)

− 2Da(t, t
′)D̃a(t3, t4)Db(t, t2)Db(t1, t

′)G11(t3, t4)G12(t4, t1)G22(t1, t2)G21(t2, t3)

+ 2Da(t, t
′)D̃a(t3, t4)Db(t, t2)Db(t1, t

′)G12(t3, t1)G12(t4, t2)G21(t1, t3)G21(t2, t4)

− 2Da(t, t
′)D̃a(t3, t4)Db(t, t2)Db(t1, t

′)G12(t3, t1)G12(t4, t2)G21(t1, t4)G21(t2, t3)

− 2Da(t, t2)Da(t1, t
′)Db(t, t

′)D̃b(t3, t4)G11(t1, t2)G12(t2, t4)G21(t3, t1)G22(t4, t3)

− 2Da(t, t2)Da(t1, t
′)Db(t, t

′)D̃b(t3, t4)G12(t1, t3)G11(t2, t1)G22(t3, t4)G21(t4, t2)

+ 2Da(t, t2)Da(t1, t
′)Db(t, t

′)D̃b(t3, t4)G12(t1, t3)G12(t2, t4)G21(t3, t1)G21(t4, t2)

− 2Da(t, t2)Da(t1, t
′)Db(t, t

′)D̃b(t3, t4)G12(t1, t3)G12(t2, t4)G21(t3, t2)G21(t4, t1)

+Da(t, t2)Da(t1, t
′)Db(t, t4)Db(t3, t

′)G11(t1, t2)G11(t2, t1)G22(t3, t4)G22(t4, t3)

−Da(t, t2)Da(t1, t
′)Db(t, t4)Db(t3, t

′)G11(t1, t2)G12(t2, t4)G21(t3, t1)G22(t4, t3)

−Da(t, t2)Da(t1, t
′)Db(t, t4)Db(t3, t

′)G11(t1, t2)G12(t2, t3)G22(t3, t4)G21(t4, t1)

−Da(t, t2)Da(t1, t
′)Db(t, t4)Db(t3, t

′)G12(t1, t3)G11(t2, t1)G22(t3, t4)G21(t4, t2)

−Da(t, t2)Da(t1, t
′)Db(t, t4)Db(t3, t

′)G12(t1, t3)G12(t2, t4)G21(t3, t2)G21(t4, t1)
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−Da(t, t2)Da(t1, t
′)Db(t, t4)Db(t3, t

′)G12(t1, t4)G11(t2, t1)G21(t3, t2)G22(t4, t3)

−Da(t, t2)Da(t1, t
′)Db(t, t4)Db(t3, t

′)G12(t1, t4)G12(t2, t3)G21(t3, t1)G21(t4, t2)

+Da(t, t2)Da(t3, t
′)Db(t, t4)Db(t1, t

′)G12(t3, t4)G12(t2, t1)G21(t1, t2)G21(t4, t3)
]

3.5 Neglect of Tadpole Diagrams

All terms of the perturbative expansion but in particular the fourth order term contained many
so-called tadpole diagrams. This is an e�ect due to a shift of the two resonators because of an
average, non zero force acting on them. In the case of a system without a shift of the resonator
this tadpole diagrams wouldn't appear. To neglect the terms containing tadpoles we rede�ne
the bosonic operator concerning this shift like

b′ = b− ⟨b⟩ .

We have a detailed look on the �rst order perturbative expansion of ⟨b⟩ with the interaction
Hamiltonian H(i) = λ(a+ a†)d†d+ λ(b+ b†)d̃†d̃

⟨b⟩ ≈ ⟨b⟩0︸︷︷︸
0

+

⟨
λ

∫
C

dt1(−i)bt
(
(at1 + a†t1)d

†
t1dt1 + (bt1 + b†t1)d̃

†
t1 d̃t1

)⟩

=− iλ
∫
C

dt1 ⟨btbt1⟩
⟨
d̃†t1 d̃t1

⟩
=iλ

∫
C

dt1D(t, t1)G22(t1, t1)

and it's corresponding Feynman diagram.

Figure 9: Tadpole diagram of order of λ as integrand of the �rst order perturbative expansion
of ⟨b⟩

The �rst order term represents exactly the �rst order tadpole diagram. Regarding this �rst
order perturbative expansion we rede�ne the bosonic operator like

b′ = b− ⟨b⟩λ
And obtain

⟨b′⟩ = ⟨b⟩ − ⟨b⟩λ = ⟨b⟩0︸︷︷︸
0

+ ⟨b⟩λ + ⟨b⟩λ2︸︷︷︸
0

+ ⟨b⟩λ3 + . . .− ⟨b⟩λ .

Since ⟨b⟩λ is canceled it means that diagrams containing tadpoles of the �rst order would vanish
with the new bosonic operators b′ = b− ⟨b⟩ and only a tadpole diagram of third order remain.
If we proceed in this way and de�ne the bosonic operator like

b′ = b− ⟨b⟩
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3.5 Neglect of Tadpole Diagrams

while ⟨b⟩ = ⟨b⟩λ + ⟨b⟩λ2 + . . . , it cancel every tadpole-like diagram and result in a ⟨b′⟩ without
tadpoles. Therefore the diagrams containing tadpoles doesn't contribute to the result.

Since we consider the perturbative expansion up to fourth order only tadpole diagrams of �rst
and third order appear. These tadpole diagrams are depicted in Fig. (10).

Figure 10: Integrand of the perturbative expansion of ⟨b⟩ up to third order
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3 Diagrammatic Perturbative Expansion of the Covariance

3.6 Perturbative Expansion represented as Feynman Diagrams

A more pleasant way to consider the perturbative expansion and to compare the di�erent terms
for the calculation of the covariance is the representation in Feynman diagrams.

Perturbative Expansion of the Zeroth Order

Figure 11: Feynman diagrams of the zeroth order perturbative expansion.
a)
⟨
Tc
(
ata
†
t′

)⟩(0)
, b)

⟨
Tc
(
btb
†
t′

)⟩(0)
and c)

⟨
Tc
(
ata
†
t′btb

†
t′

)⟩(0)
Perturbative Expansion of the Second Order

Figure 12: Feynman diagrams of the second order perturbative expansion.
a)
⟨
Tc
(
ata
†
t′

)⟩(2)
, b)

⟨
Tc
(
btb
†
t′

)⟩(2)
and c), d)

⟨
Tc
(
ata
†
t′btb

†
t′

)⟩(2)
Perturbative Expansion of the Fourth Order of

⟨
Tc
(
ata
†
t′

)⟩
and

⟨
Tc
(
btb
†
t′

)⟩

Figure 13: Feynman diagrams of the perturbative expansion of the fourth order of the single cav-
ities. First row belongs to

⟨
Tc
(
ata
†
t′

)⟩(4)
and the second row belongs to

⟨
Tc
(
btb
†
t′

)⟩(4)
.
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3.6 Perturbative Expansion represented as Feynman Diagrams

Perturbative Expansion of the Fourth Order of
⟨
Tc
(
ata
†
t′btb

†
t′

)⟩
The lower eight diagrams of Fig. (14) shows the last eight terms of the perturbative expansion
of
⟨
Tc
(
ata
†
t′btb

†
t′

)⟩
. All other terms of the fourth order are shown in the upper two lines.

Figure 14: Feynman diagrams of the fourth order perturbative expansion of the combined cav-
ities

⟨
Tc
(
ata
†
t′btb

†
t′

)⟩(4)
.
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3 Diagrammatic Perturbative Expansion of the Covariance

3.7 Speci�cation of the Covariance in Terms of the Perturbative

Expansion

To determine the covariance we started with the time-ordered expression

lim
t′→t

i

(⟨
Tc

(
ata
†
t′btb

†
t′

)⟩+−
−
⟨
Tc

(
ata
†
t′

)⟩+− ⟨
Tc

(
btb
†
t′

)⟩+−)
= ⟨nanb⟩ − ⟨na⟩ ⟨nb⟩ . (3.23)

We expanded each of the three terms up to the fourth order. From the expansion we will got
terms with increasing order of the dot-cavity coupling constant λ. To calculate the covariance
we compare those parts of

⟨
Tc
(
ata
†
t′btb

†
t′

)⟩
with

⟨
Tc
(
ata
†
t′

)⟩⟨
Tc
(
btb
†
t′

)⟩
that are proportional to

the same order of λ. Since λ is linear in the perturbation Hamiltonian the order of λ is direct
proportional to the order of the perturbation term. For the �rst part of Eq.(3.23) we obtain⟨

Tc

(
ata
†
t′btb

†
t′

)⟩
≈
⟨
Tc

(
ata
†
t′btb

†
t′

)⟩(0)
+
⟨
Tc

(
ata
†
t′btb

†
t′

)⟩(2)
+
⟨
Tc

(
ata
†
t′btb

†
t′

)⟩(4)
.

And therefore the belonging to the di�erent orders of λ is

λ0 :
⟨
Tc

(
ata
†
t′btb

†
t′

)⟩(0)
, λ2 :

⟨
Tc

(
ata
†
t′btb

†
t′

)⟩(2)
, λ4 :

⟨
Tc

(
ata
†
t′btb

†
t′

)⟩(4)
.

We expand each factor of
⟨
Tc
(
ata
†
t′

)⟩⟨
Tc
(
btb
†
t′

)⟩
up to fourth order and multiply them. Since

the perturbative expansion of the �rst and third order is zero, we multiply in each case three
terms and sort them according to their order in λ.⟨

Tc

(
ata
†
t′

)⟩⟨
Tc

(
btb
†
t′

)⟩
≈
(⟨

Tc

(
ata
†
t′

)⟩(0)
+
⟨
Tc

(
ata
†
t′

)⟩(2)
+
⟨
Tc

(
ata
†
t′

)⟩(4))
·
(⟨

Tc

(
btb
†
t′

)⟩(0)
+
⟨
Tc

(
btb
†
t′

)⟩(2)
+
⟨
Tc

(
btb
†
t′

)⟩(4))

λ0 :
⟨
Tc

(
ata
†
t′

)⟩(0)⟨
Tc

(
btb
†
t′

)⟩(0)
(3.24)

λ2 :
⟨
Tc

(
ata
†
t′

)⟩(0)⟨
Tc

(
btb
†
t′

)⟩(2)
+
⟨
Tc

(
ata
†
t′

)⟩(2)⟨
Tc

(
btb
†
t′

)⟩(0)
(3.25)

λ4 :
⟨
Tc

(
ata
†
t′

)⟩(0)⟨
Tc

(
btb
†
t′

)⟩(4)
+
⟨
Tc

(
ata
†
t′

)⟩(2)⟨
Tc

(
btb
†
t′

)⟩(2)
+
⟨
Tc

(
ata
†
t′

)⟩(4)⟨
Tc

(
btb
†
t′

)⟩(0)
(3.26)

Remaining Diagrams of the Covariance up to Fourth Order

Now we compare the equations or the corresponding Feynman diagrams of the perturbative
expansion of parts within terms of equal orders of λ.

In Fig. (11) one can see plainly that the multiplication of the two zeroth order terms of the
single resonators, corresponding to Eq.(3.24), is equal to the zeroth order of the combined
resonators.
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3.7 Speci�cation of the Covariance in Terms of the Perturbative Expansion

Regarding Fig. (11) and Fig. (12) it seems clear, that the multiplications of the zeroth order
term of a single resonator with a second order term of the complementary resonator, corre-
sponding to Eq.(3.25) are equal to the second order terms of the combined cavities.

To compare the terms or diagrams of the fourth order we beginn with the outer terms of
Eq.(3.26). We multiply the zeroth order of the single resonators, see Fig. (11), with the fourth
order terms of the complementary single resonator, see Fig. (13). These diagrams comply with
those of the upper two lines in Fig. (14). The center term of Eq.(3.26) corresponds to the two
diagrams a) and b) of Fig. (12). The multiplication of these two is equal to the �rst of the
lower eight diagrams in Fig. (14).

Since the terms of the multiplied single-resonator-terms are subtracted from the combined
expression only seven equations or corresponding Feynman diagrams remain and contribute to
the covariance. The equation of the covariance reduces to

C = λ4
∫
C

dt1

∫
C

dt2

∫
C

dt3

∫
C

dt4

[
+Da(t, t1)Da(t2, t

′)Db(t, t3)Db(t4, t
′)G12(t4, t3)G12(t1, t2)G21(t2, t1)G21(t3, t4)

−Da(t, t1)Da(t2, t
′)Db(t, t3)Db(t4, t

′)G11(t2, t1)G12(t1, t3)G21(t4, t2)G22(t3, t4)

−Da(t, t1)Da(t2, t
′)Db(t, t3)Db(t4, t

′)G12(t2, t4)G11(t1, t2)G22(t4, t3)G21(t3, t1)

−Da(t, t1)Da(t2, t
′)Db(t, t3)Db(t4, t

′)G12(t4, t2)G12(t1, t3)G21(t2, t1)G21(t3, t4)

−Da(t, t1)Da(t2, t
′)Db(t, t3)Db(t4, t

′)G12(t4, t3)G12(t1, t2)G21(t2, t4)G21(t3, t1)

−Da(t, t1)Da(t2, t
′)Db(t, t3)Db(t4, t

′)G12(t2, t3)G11(t1, t2)G21(t4, t1)G22(t3, t4)

−Da(t, t1)Da(t2, t
′)Db(t, t3)Db(t4, t

′)G11(t2, t1)G12(t1, t4)G22(t4, t3)G21(t3, t2)
]

The corresponding Feynman diagrams are shown in Fig(15).

Figure 15: Feynman diagrams representing the Covariance
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4 Results: Analytic Formula for the Covariance

We reduced the calculation of the covariance in terms of the perturbative expansion up to
fourth order to the integration of seven terms that can be represented in the seven Feynman
diagrams of Fig. (15). Since the Green's functions of these diagrams correspond to contour
time arguments we have to transform them to real time and do the integration.

4.1 Real Time and Frequency Representation

The seven diagrams reduce in principle to three di�erent types. The square-shaped diagrams
have some counterparts where the inner fermionic Green's functions go the other way round as
well di�erent components of the Green's functions.

Figure 16: Three di�erent types of diagrams that are contained in the covariance C.

The �rst diagram Fig. (16)(a) is just the multiplication of two bubble-diagrams. The second and
third diagram consists of the same outer bosonic Green's functions an di�erent inner fermionic.
At �rst glance, the third diagram might be a twisted version of the second diagram. But if
we open the outer time arguments, twist the lower line and close the time arguments again we
obtain the same structure of diagrams with identical fermionic arrows but the direction of the
arrows of the lower bosonic Green's functions are reversed. Therefore we have to consider each
type individual.

Transformation to Real Time Space

The Green's function of the diagrams Fig. (16) read in a short notation∮
C

dt1

∮
C

dt2

∮
C

dt3

∮
C

dt4D(t, t1)D(t, t3)P (t1, t2, t3, t4)D(t2, t
′)D(t4, t

′) .

We parametrize the contour according [3]∫
C

dτi =

∫ ∞
−∞

dti +

∫ −∞
∞

dti =

∫ ∞
−∞

dti −
∫ ∞
−∞

dti .

If we introduce the notation si that corresponds to the position of the time argument ti, the
Green's function in real time space reads

∑
s1,s2,s3,s4=±

s1s2s3s4

∞∫
−∞

dts11

∞∫
−∞

dts22

∞∫
−∞

dts33

∞∫
−∞

dts44 D
sts1(t, t1)D

sts3(t, t3)P
s1s2s3s4(t1, t2, t3, t4)
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4 Results: Analytic Formula for the Covariance

·Ds2st′ (t2, t
′)Ds4st′ (t4, t

′)

whereby we have summed up all possible distributions of the time arguments on the contour.
Since we are looking for the limit of the lesser function limt′→t iF

<(t, t′), it holds that t < t′

and therefore t' lies always on the lower branch and t on the upper branch. Hence st = + and
st′ = −.

4.1.1 Transformation of the Bubble Diagram

We consider the basic diagram of the bubble diagram like in Fig. (16)(a).

Figure 17: Basic diagram of the bubble diagram.

We introduce

P s1s2s3s4(t1, t2, t3, t4) = Gs1s2(t1, t2)G
s2s1(t2, t1)G

s3s4(t3, t4)G
s4s3(t4, t3)

and a simpler notation. We sort the Green's functions according to the upper and lower branch
in Fig. (17).∑

s1,s2
s3,s4=±

s1s2s3s4

∫∫∫∫
dts11 dts22 dts33 dts44

(
D+1G12G21D2−) (D+3G34G43D4−)

Since we have calculated the bosonic and fermionic Green's functions depending on the energy
insert the Fourier transformation of the Green's functions and transform them to the frequency
domain.∑

s1,s2
s3,s4=±

s1s2s3s4

∫∫∫∫
dt1 dt2 dt3 dt4

∫∫ ∫∫∫∫
dω1 dω2 dω3 dω4 dω5 dω6

D+1(ω1)e
−iω1(t−t1)G12(ω2)e

−iω2(t1−t2)G21(−ω2)e
−iω2(t2−t1)D2−(ω3)e

−iω3(t2−t′)

·D+3(ω4)e
−iω4(t−t3)G34(−ω5)e

−iω5(t3−t4)G43(ω5)e
−iω5(t4−t3)D4−(ω6)e

−iω6(t4−t′)

This expression includes the time integrations∫
dt1e

it1(ω1−ω2+ω2) = δ(ω1) ,
∫

dt2e
it2(ω2−ω2−ω3) = δ(−ω3) ,∫

dt3e
it3(ω4−ω5+ω5) = δ(ω4) ,

∫
dt4e

it4(ω5−ω5−ω6) = δ(−ω6) .
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4.1 Real Time and Frequency Representation

If we perform the time integrations the equation becomes∑
s1,s2

s3,s4=±

s1s2s3s4

∫∫∫∫ ∫∫
dω1 dω2 dω3 dω4 dω5 dω6 · e−iω1teiω3t′e−iω4teiω6t′

δ(ω1)δ(−ω3)δ(−ω4)δ(−ω6)

D+1(ω1)G
12(ω2)G

21(−ω2)D
2−(ω3)D

+3(ω4)G
34(−ω5)G

43(ω5)D
4−(ω6) .

We perform four integrations over the frequencies which are arguments of the delta functions.∑
s1,s2

s3,s4=±

s1s2s3s4

∫∫
dω2 dω5

(
D+1(0)G12(ω2)G

21(−ω2)D
2−(0)

) (
D+3(0)G34(−ω5)G

43(ω5)D
4−(0)

)

4.1.2 Transformation of a Square-shaped Diagram

We consider the basic diagram of the square-shaped diagrams like the type of Fig. (16)(b).

Figure 18: Basic diagram of the square-shaped diagrams.

We introduce

P s1s2s3s4(t1, t2, t3, t4) = Gs4s3(t4, t3)G
s3s1(t3, t1)G

s1s2(t1, t2)G
s2s4(t2, t4)

and the simpler notation. We sort the Green's functions according to the upper and lower
branch in Fig. (18) and the two vertical connections.∑

s1,s2
s3,s4=±

s1s2s3s4

∫∫∫∫
dts11 dts22 dts33 dts44 D

+1G12D2−G31G24D+3G43D4−

We insert the Fourier transformation of the Green's functions∑
s1,s2

s3,s4=±

s1s2s3s4

∫∫∫∫
dt1 dt2 dt3 dt4

∫∫∫∫ ∫∫∫∫
dω1 dω2 dω3 dω4 dω5 dω6 dωx dωy

D+1(ω1)e
−iω1(t−t1)G12(ω2)e

−iω2(t1−t2)D2−(ω3)e
−iω3(t2−t′)G31(ωx)e

−iωx(t3−t1)

·G24(ωy)e
−iωy(t2−t4)D+3(ω4)e

−iω4(t−t3)G43(ω5)e
−iω5(t4−t3)D4−(ω6)e

−iω6(t4−t′)
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4 Results: Analytic Formula for the Covariance

Which includes the time integrations∫
dt1e

it1(ω1−ω2+ωx) = δ(ω1 − ω2 + ωx) ,
∫
dt2e

it2(ω2−ω3−ωy) = δ(ω2 − ω3 − ωy) ,∫
dt3e

it3(−ωx+ω4+ω5) = δ(−ωx + ω4 + ω5) ,
∫
dt4e

it4(ωy−ω5−ω6) = δ(ωy − ω5 − ω6) .

We perform the integration over the time arguments, four frequencies that are arguments in
the delta functions and consider the case t = t′.∑

s1,s2
s3,s4=±

s1s2s3s4

∫∫∫∫ ∫∫∫∫
dω1 dω2 dω3 dω4 dω5 dω6 dωx dωy · e−iω1teiω3t′e−iω4teiω6t′

δ(ω1 − ω2 + ωx)δ(ω2 − ω3 − ωy)δ(−ωx + ω4 + ω5)δ(ωy − ω5 − ω6)

D+1(ω1)G
12(ω2)D

2−(ω3)G
31(ωx)G

24(ωy)D
+3(ω4)G

43(ω5)D
4−(ω6)

=
∑
s1,s2

s3,s4=±

s1s2s3s4

∫∫∫∫
dω2 dω5 dωx dωy · ei(t−t

′)(ω5−ω2)

D+1(ω2 − ωx)G
12(ω2)D

2−(ω2 − ωy)G
31(ωx)G

24(ωy)

D+3(ωx − ω5)G
43(ω5)D

4−(ωy − ω5)

t=t′
=

∑
s1,s2

s3,s4=±

s1s2s3s4

∫∫∫∫
dω2 dω5 dωx dωy

D+1(ω2 − ωx)G
12(ω2)D

2−(ω2 − ωy)G
31(ωx)G

24(ωy)

D+3(ωx − ω5)G
43(ω5)D

4−(ωy − ω5)

4.1.3 Transformation of a Twisted-shaped Diagram

We consider the basic diagram of the twisted-shaped diagrams like the type of Fig. (16)(c).

Figure 19: Basic diagram of the twisted-shaped diagrams.

Here P takes the form

P s1s2s3s4(t1, t2, t3, t4) = Gs4s1(t4, t1)G
s1s2(t1, t2)G

s2s3(t2, t3)G
s3s4(t3, t4)
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4.1 Real Time and Frequency Representation

and we use again the short notation. We also sort the Green's functions according to the upper
and lower branch in Fig. (19) and the two vertical connections.∑

s1,s2
s3,s4=±

s1s2s3s4

∫∫∫∫
dts11 dts22 dts33 dts44 D

+1G12D2−G23G41D+3G34D4−

We insert the Fourier transformation of the Green's functions∑
s1,s2

s3,s4=±

s1s2s3s4

∫∫∫∫
dt1 dt2 dt3 dt4

∫∫∫∫ ∫∫∫∫
dω1 dω2 dω3 dω4 dω5 dω6 dωv dωz

D+1(ω1)e
−iω1(t−t1)G12(ω2)e

−iω2(t1−t2)D2−(ω3)e
−iω3(t2−t′)G23(ωv)e

−iωv(t2−t3)

·G41(ωz)e
−iωz(t4−t1)D+3(ω4)e

−iω4(t−t3)G34(−ω5)e
−iω5(t3−t4)D4−(ω6)e

−iω6(t4−t′)

Which includes the time integrations∫
dt1e

it1(ω1−ω2+ωz) = δ(ω1 − ω2 + ωz) ,
∫
dt2 eit2(ω2−ω3−ωv) = δ(ω2 − ω3 − ωv) ,∫

dt3e
it3(ωv+ω4−ω5) = δ(ωv + ω4 − ω5) ,

∫
dt4e

it4(−ωz+ω5−ω6) = δ(−ωz + ω5 − ω6) .

An analog calculation leads to∑
s1,s2

s3,s4=±

s1s2s3s4

∫∫∫∫ ∫∫∫∫
dω1 dω2 dω3 dω4 dω5 dω6 dωv dωze

−iω1teiω3t′e−iω4teiω6t′

δ(ω1 − ω2 + ωz)δ(ω2 − ω3 − ωv)δ(ωv + ω4 − ω5)δ(−ωz + ω5 − ω6)

D+1(ω1)G
12(ω2)D

2−(ω3)G
23(ωv)G

41(ωz)D
+3(ω4)G

34(−ω5)D
4−(ω6)

=
∑

s1,s2,s3,s4=±

s1s2s3s4

∫∫∫∫
dω2 dω5 dωv dωze

−i(ω2−ωz+ω5−ωv)(t−t′)

D+1(ω2 − ωz)G
12(ω2)D

2−(ω2 − ωv)G
23(ωv)G

41(ωz)

D+3(ω5 − ωv)G
34(−ω5)D

4−(ω5 − ωz)

t=t′
=

∑
s1,s2,s3,s4=±

s1s2s3s4

∫∫∫∫
dω2 dω5 dωv dωz

D+1(ω2 − ωz)G
12(ω2)D

2−(ω2 − ωv)G
23(ωv)G

41(ωz)

D+3(ω5 − ωv)G
34(−ω5)D

4−(ω5 − ωz)
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4 Results: Analytic Formula for the Covariance

Summation Over Inner Time Arguments

The summation of s1 to s4 leads to 16 di�erent combinations. So we �rst look for some
simpli�cations. Since we consider the whole system at zero temperature the bosonic lesser
Green's function becomes zero.

D+−
a,b (ωi) = −ina,bδ(ωi − ωa,b) =

T=0
0

This simplify the calculations a lot. The integral for all types of diagrams includes the multi-
plication of the four bosonic functions D+1D2−D+3D4−. The expression D+− = 0 occurs in the
case of 1 = −, 2 = +, 3 = − or 4 = +. Hence the only remaining combination is 1 = +, 2 = −,
3 = + and 4 = −. This determines the four bosonic Green's functions to D++D−−D++D−−.
The distribution of the indices of the fermionic Green's functions depends on each diagram.

Until now, we have done the perturbative expansion using the Keldysh nonequilibrium Green's
function technique which ended up in an integration of Keldysh Green's functions over several
contour time arguments. We transformed these equations to an integration in the real time
space by parameterizing the contour. We replaced the Green's functions in the integration
with their Fourier transformations and receive now an integral in the frequency domain. We
determine the integrals in the frequency domain of all diagrams in the same way as before.
The only varying part is the direction of the fermionic Green's function and their components.
After we determined these terms we insert the indices 1 = +, 2 = −, 3 = + and 4 = − and
sort the integral according to the di�erent dependencies on ωi.

The seven remaining diagrams are shown in Fig. (20).

Figure 20: All diagrams for the calculation of the covariance
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4.1 Real Time and Frequency Representation

The integrals in the frequency domain of the seven diagrams read:

Diagram Fig. (20)(a)∫∫
dω2 dω5 D

++
a (0)D−−a (0)D++

b (0)D−−b (0)

G+−
12 (ω2)G

−+
21 (−ω2)G

+−
21 (−ω5)G

−+
12 (ω5)

Diagram Fig. (20)(b) Diagram Fig. (20)(c)∫∫
dωx dωyG

++
12 (−ωx)G

−−
21 (−ωy)

∫∫
dωx dωyG

++
21 (ωx)G

−−
12 (ωy)∫

dω2D
++
a (ω2 − ωx)G

−+
11 (−ω2)D

−−
a (ω2 − ωy)

∫
dω2D

++
a (ω2 − ωx)G

+−
11 (ω2)D

−−
a (ω2 − ωy)∫

dω5D
++
b (ωx − ω5)G

+−
22 (−ω5)D

−−
b (ωy − ω5)

∫
dω5D

++
b (ωx − ω5)G

−+
22 (ω5)D

−−
b (ωy − ω5)

Diagram Fig. (20)(d) Diagram Fig. (20)(e)∫∫
dωx dωyG

++
12 (−ωx)G

−−
12 (−ωy)

∫∫
dωx dωyG

++
21 (ωx)G

−−
21 (ωy)∫

dω2D
++
a (ω2 − ωx)G

−+
21 (−ω2)D

−−
b (ω2 − ωy)

∫
dω2D

++
a (ω2 − ωx)G

+−
12 (ω2)D

−−
b (ω2 − ωy)∫

dω5D
++
b (ωx − ω5)G

+−
21 (−ω5)D

−−
a (ωy − ω5)

∫
dω5D

++
b (ωx − ω5)G

−+
12 (ω5)D

−−
a (ωy − ω5)

Diagram Fig. (20)(f) Diagram Fig. (20)(g)∫∫
dωv dωzG

−+
12 (ωv)G

−+
21 (ωz)

∫∫
dωv dωzG

+−
21 (−ωv)G

+−
12 (−ωz)∫

dω2D
++
a (ω2 − ωz)G

+−
11 (ω2)D

−−
a (ω2 − ωv)

∫
dω2D

++
a (ω2 − ωz)G

−+
11 (−ω2)D

−−
a (ω2 − ωv)∫

dω5D
++
b (ω5 − ωv)G

+−
22 (−ω5)D

−−
b (ω5 − ωz)

∫
dω5D

++
b (ω5 − ωv)G

−+
22 (ω5)D

−−
b (ω5 − ωz)
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4 Results: Analytic Formula for the Covariance

4.2 Integration at the Example of a Square-Shaped Diagram

Exemplary for all diagrams, except for the �rst bubble-diagram, we do the integration for the
diagram 20 (c). We sorted the Green's functions according to the di�erent integration variables.
As a �rst step we do the integration over ω5 analytically. Afterwards we transfer the calculation
to the integration over ω2.∫∫

dωx dωy G
++
21 (ωx)G

−−
12 (ωy)∫

dω2 D
++
a (ω2 − ωx)G

+−
11 (ω2)D

−−
a (ω2 − ωy)∫

dω5 D
++
b (ωx − ω5)G

−+
22 (ω5)D

−−
b (ωy − ω5)

Integration over ω5

We start with the integration over ω5. We insert the bosonic Green's functions, consisting of a
principle part and a delta function, and the fermionic Green's function. The expression can be
divided in four parts. Three of these parts contain a delta function which makes the integration
really easy. The complicated part is the integration of the two principle parts multiplied with
the fermionic Green's function.

I5(ωx, ωy) =

∫
dω5 D

++
b (ωx − ω5)G

−+
22 (ω5)D

−−
b (ωy − ω5)

=

∫
dω5

iΓ
[(
(ω5 − ε)2 + Γ2

(
1− cos2 φ

2

))
(fL + fR − 2)− Γ(ω5 − ε) sinφ (fL − fR)

](
(ω5 − ε)2 + Γ2

(
1 + cos2 φ

2

))2 − 4Γ4 cos2 φ
2

·
[
P

(
1

ωx − ω5 − ωb

)
− iπδ (ωx − ω5 − ωb)

]
·
[
−P

(
1

ωy − ω5 − ωb

)
− iπδ (ωy − ω5 − ωb)

]

=

∫
dω5

iΓ
[(
(ω5 − ε)2 + Γ2

(
1− cos2 φ

2

))
(fL + fR − 2)− Γ(ω5 − ε) sinφ (fL − fR)

](
(ω5 − ε)2 + Γ2

(
1 + cos2 φ

2

))2 − 4Γ4 cos2 φ
2[

− P
(

1

ωx − ω5 − ωb

)
P

(
1

ωy − ω5 − ωb

)
− P

(
1

ωx − ω5 − ωb

)
iπδ (ωy − ω5 − ωb)

+ P

(
1

ωy − ω5 − ωb

)
iπδ (ωx − ω5 − ωb) + iπδ (ωx − ω5 − ωb) iπδ (ωy − ω5 − ωb)

]

4.2.1 Integral Containing Two Principal Values

Since the integration of the delta functions is quiet easy we focus �rst on the complicated part
containing the two principle values.
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4.2 Integration at the Example of a Square-Shaped Diagram

I5(ωx, ωy) = −
∫
dω5 P

(
1

ωx − ω5 − ωb

)
P

(
1

ωy − ω5 − ωb

)
·
iΓ
[(
(ω5 − ε)2 + Γ2

(
1− cos2 φ

2

))
(fL + fR − 2)− Γ(ω5 − ε) sinφ (fL − fR)

](
(ω5 − ε)2 + Γ2

(
1 + cos2 φ

2

))2 − 4Γ4 cos2 φ
2

To solve the integral we express the principle value as

P

(
1

x

)
= lim

∆→0

x

x2 +∆2
.

Furthermore we transform the denominator(
(ω5 − ε)2 + Γ2

(
1 + cos2

φ

2

))2
− 4Γ4 cos2

φ

2

=

(
(ω5 − ε)2 + Γ2

(
1− cos2

φ

2

)2)
·
(
(ω5 − ε)2 + Γ2

(
1 + cos2

φ

2

)2)
.

So the integration becomes

I5(ωx, ωy) =

lim
∆→0
−
∫
dω5

iΓ
[(
(ω5 − ε)2 + Γ2

(
1− cos2 φ

2

))
(fL + fR − 2)− Γ(ω5 − ε) sinφ (fL − fR)

](
(ω5 − ε)2 + Γ2

(
1− cos2 φ

2

)2) · ((ω5 − ε)2 + Γ2
(
1 + cos2 φ

2

)2)
· ωx − ω5 − ωb

(ωx − ω5 − ωb)2 +∆2
· ωy − ω5 − ωb

(ωy − ω5 − ωb)2 +∆2
.

We de�ne new variables to simplify the expression

Ω±x = ωx ± ωb, Ω±y = ω± − ωb and Λ± = Γ
(
1± cos2

φ

2

)
.

The nominator of the fermionic Green's function can be splitted in three parts, whereby each
of them depends on a di�erent order of (ω5 − ε). Since we want to perform a partial fraction
decomposition in ω5, we consider each of these parts individually. If the integrand contains the
Fermi-function, the upper integration limit will be changed. In the case of fL,R to ±eV/2. We
will see later that the part that contains the factor "-2" but no Fermi function cancels, so we
ignore it at the moment and come back to it later. The integration over ω5 contains now three
di�erent integrals I1, I2 and I3 with di�erent factors. Each Ii will be determined through a
partial fraction decomposition.

I5(ωx, ωy) = −iΓ
[
I1 ∓ Γ sinφ · I2 + Γ2 sin2 φ

2
· I3
]

I1 = lim
∆→0

±eV/2∫
−∞

dω5
Ω−x − ω5

(Ω−x − ω5)2 +∆2
·

Ω−y − ω5

(Ω−y − ω5)2 +∆2
· (ω5 − ε)(

(ω5 − ε)2 + Λ2
−
) · (ω5 − ε)(

(ω5 − ε)2 + Λ2
+

)
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I2 = lim
∆→0

±eV/2∫
−∞

dω5
Ω−x − ω5

(Ω−x − ω5)2 +∆2
·

Ω−y − ω5

(Ω−y − ω5)2 +∆2
· (ω5 − ε)(

(ω5 − ε)2 + Λ2
−
) · 1(

(ω5 − ε)2 + Λ2
+

)

I3 = lim
∆→0

±eV/2∫
−∞

dω5
Ω−x − ω5

(Ω−x − ω5)2 +∆2
·

Ω−y − ω5

(Ω−y − ω5)2 +∆2
· 1(

(ω5 − ε)2 + Λ2
−
) · 1(

(ω5 − ε)2 + Λ2
+

)
We perform this partial fraction decomposition for each of the four factors inside each Ii,
multiply them and repeat the partial fraction decomposition until we have decomposed the
complete expression. The partial fraction decomposition of I1 to I3 di�er only in the coe�cients
of the decomposition. Therefore the integration of the decomposition is equal in all three cases
except for the coe�cients. We label the coe�cients of the decomposition of the di�erent
integrals with

ai → I1, bi → I2 and ci → I3 .

We calculate the partial fraction decomposition exemplary for I1.

ω5 − Ω−ω5

(ω5 − Ω−ω5
)2 +∆2

· ω5 − Ω−∆
(ω5 − Ω−∆)

2 +∆2
· ω5 − ε
(ω5 − ε)2 + Λ+

2 ·
ω5 − ε

(ω5 − ε)2 + Λ−
2

=
a1

ω5 − (Ω−ω5
+ i∆)

+
a2

ω5 − (Ω−ω5
− i∆)

+
a3

ω5 − (Ω−∆ + i∆)
+

a4
ω5 − (Ω−∆ − i∆)

+
a5

ω5 − (ε+ iΛ+)
+

a6
ω5 − (ε− iΛ+)

+
a7

ω5 − (ε+ iΛ−)
+

a8
ω5 − (ε− iΛ−)

=
ω5(a1 + a2)− Ω−ω5

(a1 + a2) + i∆(a1 − a2)
(ω5 − Ω−ω5

)2 +∆2
+
ω5(a3 + a4)− Ω−∆(a3 + a4) + i∆(a3 − a4)

(ω5 − Ω−∆)
2 +∆2)

+
ω5(a5 + a6)− ε(a5 + a6) + iΛ+(a5 − a6)

(ω5 − ε)2 + Λ+
2)

+
ω5(a7 + a8)− ε(a7 + a8) + iΛ−(a7 − a8)

(ω5 − ε)2 + Λ−
2)

With the inde�nite integrals∫
dx

x

(x− xi)2 + y2
=
xi
y
arctan

(
x− xi
y

)
+

1

2
log
(
(x− xi)2 + y2

)
,∫

dx
1

(x− xi)2 + y2
=
1

y
arctan

(
x− xi
y

)
,

we obtain for the integration for example of the �rst addend:

lim
∆→0

±eV/2∫
−∞

dω5

ω5(a1 + a2)− Ω−ω5
(a1 + a2) + i∆(a1 − a2)

(ω5 − Ω−ω5
)2 +∆2
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4.2 Integration at the Example of a Square-Shaped Diagram

= lim
∆→0

[
(a1 + a2)

(
Ω−x
∆

arctan

(
ω5 − Ω−x

∆

)
+

1

2
log
(
(ω5 − Ω−x )

2 +∆2
)
− Ω−x

∆
arctan

(
ω5 − Ω−x

∆

))
+i(a1 − a2) arctan

ω5 − Ω−x
∆

]±eV/2
−∞

= lim
∆→0

(a1 + a2)
1

2
log
(
(ω5 − Ω−x )

2 +∆2
) ∣∣∣±eV/2
−∞

The �rst and second arctan-term cancel each other and since the factor a1 − a2 is zero it
cancels the third arctan-term. The di�erence of the corresponding coe�cients of the other three
addends is also zero. The identical calculation for the other addends with di�erent coe�cients
ai leads to complete expression of I1

I1 = lim
∆→0
−iΓ

2

[
(a1 + a2) log

(
(x− Ω−x )

2 +∆2
)
+ (a3 + a4) log

(
(x− Ω−∆)

2 +∆2
)

+ (a5 + a6) log
(
(x− ε)2 + Λ2

+

)
+ (a7 + a8) log

(
(x− ε)2 + Λ2

−
) ]±eV/2
−∞

Since Ω−x = ωx − ωb, Ω−y = ωy − ωb, ε and Λ± = Γ(1± cos φ
2
) are small compared to ∞ we can

summarize all logarithmic terms with the upper integration limit as its argument.

(a1 + a2) log
(
(−∞− x1)2 + y2

)
+ (a3 + a4) log

(
(−∞− x2)2 + y2

)
+(a5 + a6) log

(
(−∞− x3)2 + λ2

)
+ (a7 + a8) log

(
(−∞− x3)2 + λ̄2

)
In the limit y → 0 the sum of all factors is zero and the logarithmic term evaluated at the
upper integration limit cancels. Now we remember that the inital integral also contained a part
without a Fermi function. In this case both integration limits would be in�nity and therefore
both terms would be canceled because the sum of coe�cients is zero. This also applies for the
coe�cients of I2 and I3.

8∑
i=1

ai =
8∑

i=1

bi =
8∑

i=1

ci = 0

Furthermore the di�erences such as a1 − a2 are also zero for the coe�cients bi and ci.
The complete integration then reads

I5(ωx, ωy) =− iΓ
[
I1 ∓ Γ sinφ · I2 + Γ2 sin2 φ

2
· I3
]

= −1

2
iΓ
[(
a1 + a1 ∓ Γ sinφ(b1 + b2) + Γ2

(
1− cos2

φ

2

)
(c1 + c2)

)
log
(
(±eV/2− Ω−x )

2
)

+
(
a3 + a4 ∓ Γ sinφ(b3 + b4) + Γ2

(
1− cos2

φ

2

)
(c3 + c4)

)
log
(
(±eV/2− Ω−y )

2
)

+
(
a5 + a6 ∓ Γ sinφ(b5 + b6) + Γ2

(
1− cos2

φ

2

)
(c5 + c6)

)
log
(
(±eV/2− ε)2 + Λ2

−
)

+
(
a7 + a8 ∓ Γ sinφ(b7 + b8) + Γ2

(
1− cos2

φ

2

)
(c7 + c8)

)
log
(
(±eV/2− ε)2 + Λ2

+

) ]
,

(4.1)

whereby we still have to sum up the parts with the upper and lower sign.
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4.2.2 Integration of Components Containing Delta Functions

The full integration over ω5 contains four integrands from which three contain a delta function.
Additionally, they contain a Fermi function which changes the integration limits. Therefore the
integration of the delta function will give additional Heaviside functions. Using the inde�nite
integral

b∫
a

f(x)δ(x− c) = f(c)Θ(c− a)Θ(b− c), the fact that Θ(c− (−∞)) = 1 ,

the previously introduced variables Ω−x,y = ωx,y − ωb and Λ± = Γ(1± cos2 φ
2
) the integration of

one of these diagrams becomes∫
dω5 P

(
1

ωy − ω5 − ωb

)
iπδ (ωx − ω5 − ωb)

·
iΓ
[(
(ω5 − ε)2 + Γ2

(
1− cos2 φ

2

))
(fL + fR − 2)− Γ(ω5 − ε) sinφ (fL − fR)

](
(ω5 − ε)2 + Γ2

(
1 + cos2 φ

2

))2 − 4Γ4 cos2 φ
2

=− P
(

1

Ω−y − Ω−x

)
· Γπ(

(Ω−x − ε)
2 + Λ2

+

) (
(Ω−x − ε)

2 + Λ2
−
)

·
[ (

Θ(eV/2− Ω−x ) + Θ(−eV/2− Ω−x )− 2
) ((

Ω−x − ε
)2

+ Γ2
(
1− cos2

φ

2

))
−
(
Θ(eV/2− Ω−x )−Θ(−eV/2− Ω−x )

)
Γ(Ω−x − ε) sinφ

]
(4.2)

A similar calculation solves the integration of the other two components.

Integration over ω2

Since the integrands of the integration over ω5 and ω2 are similar, it is easy to use the de�nite
integral that we just have calculated and change only some variables and factors. For this
purpose we compare in each case the bosonic and fermionic Green's functions. The two integrals
read

I5(ωx, ωy) =

∫
dω5 D

++
b (ωx − ω5)G

−+
22 (ω5)D

−−
b (ωy − ω5)

I2(ωx, ωy) =

∫
dω2 D

++
a (ω2 − ωx)G

+−
11 (ω2)D

−−
a (ω2 − ωy)

The bosonic Green's functions consists of a principle part and a delta function. Their argument
at D++

b (ωx − ω5) and D
−−
b (ωy − ω5) is Ω−x,y − ω5.

In the case of D++
a (ω2 − ωx) and D−−a (ω2 − ωy) it changes to ω2 − Ω+

x,y. The delta function
is symmetric about the y-axis and the principle part is symmetric about the zero point which
means

δ(x) = δ(−x), and P
(
1

x

)
= −P

(
1

−x

)
.
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The two fermionic Green's functions read

G−+22 (ω5) =iΓ

[(
(ω5 − ε)2 + Γ2

(
1− cos2 φ

2

))
(fL + fR − 2)− Γ(ω5 − ε) sinφ (fL − fR)

](
(ω5 − ε)2 + Γ2

(
1 + cos2 φ

2

))2 − 4Γ4 cos2 φ
2

G+−
11 (ω2) =iΓ

[(
(ω2 − ε)2 + Γ2

(
1− cos2 φ

2

))
(fL + fR) + Γ(ω2 − ε) sinφ (fL − fR)

](
(ω2 − ε)2 + Γ2

(
1 + cos2 φ

2

))2 − 4Γ4 cos2 φ
2

The only di�erence is an additional factor "-2" in G−+22 (ω5), which drops out at the integration,
and the sign of the last term proportional to fL − fR changes.

Therefore we are able to use the de�nite integral of the integration over ω5 and change the
variables Ω−x,y → Ω+

x,y and the sign of the principle values as well as the sign of the latter
part of the fermionic Green's function. It should be kept in mind that, due to the di�erent
resonance frequencies of the cavities, the originally de�ned variable Ω±x,y = ωx,y±ωb changes to
Ω±x,y = ωx,y ± ωa. To keep things simple we don't observe this fact hereinafter but it is easy to
reintroduce if it's required.

4.2.3 Full Analytical Integral

Now we recompose the expression of the integration over ω5 and ω2. For this we insert all coef-
�cients of the partial fraction decomposition in equation (4.1) and summarize the integrations
containing a delta function similar to equation (4.2). Then we add the same parts again and
apply the modi�cations that we have developed in the chapter before. To obtain the full ex-
pression we add the integral over ωx and ωy and the two remaining fermionic Green's functions.
It should be noted that the following equations contain several ±, or ∓. To obtain the full
expression the equations with the upper sign have to be added to the one with the lower sign.

∫∫
dωx dωy G

++
21 (ωx)G

−−
12 (ωy)∫

dω2 D
++
a (ω2 − ωx)G

+−
11 (ω2)D

−−
a (ω2 − ωy)∫

dω5 D
++
b (ωx − ω5)G

−+
22 (ω5)D

−−
b (ωy − ω5)
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=

∫∫
dωx dωy

iΓ(
(ωx − ε)2 + Λ2

+

) (
(ωx − ε)2 + Λ2

−
) (

(ωy − ε)2 + Λ2
+

) (
(ωy − ε)2 + Λ2

−
)

·
[
(ωx − ε)2

(
e−i

φ
2 fL + ei

φ
2 fR

)
− Γ2 sin2

φ

2
(fLe

−iφ
2 + fRe

iφ
2 )− cos

φ

2

[
(ωx − φ− iΓ)2 + Γ2 cos2

φ

2

] ]
·
[
(ωy − ε)2

(
ei

φ
2 fL + e−i

φ
2 fR

)
− Γ2 sin2

φ

2
(fLe

iφ
2 + fRe

−iφ
2 )− cos

φ

2

[
(ωy − φ+ iΓ)2 + Γ2 cos2

φ

2

] ]
[
−1

2
log
(
(±eV/2− Ω+

x )
2
) (Ω+

x − ε)2 ∓ iΓ sinφ
(Λ+Λ−−(Ω+

x−ε)2)
Λ++Λ−

+ Γ2 sin2 φ
2

(Ω+
x − Ω+

y )((Ω
+
x − ε)2 + Λ2

+) · ((Ω+
x − ε)2 + Λ2

−)

+
1

2
log
(
(±eV/2− Ω+

y )
2
) (Ω+

y − ε)2 ∓ iΓ sinφ
(Λ+Λ−−(Ω+

y −ε)2)
Λ++Λ−

+ Γ2 sin2 φ
2

(Ω+
x − Ω+

y )((Ω
+
y − ε)2 + Λ2

+) · ((Ω+
y − ε)2 + Λ2

−)

+
1

2
log
(
(±eV/2− ε)2 + Λ2

−
) [(Ω+

y − ε)2 − (Ω+
x − ε)2

]
·
[
Λ2

+ ± iΓ sinφΛ+ + Γ2 sin2 φ
2

]
(Ω+

x − Ω+
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4.3 Extension of the Integration to the Remaining Diagrams

We have done the integration for the diagram (c).

Since the integrals of the other diagrams are quiet similar we check how to apply the formalism
to the integration of the other diagrams. The main structure of all integrals is equal.

One sort the Green's functions regarding the integration variable and obtain three parts: An
integration over ω5 and ω2, containing two bosonic and a single fermionic Green's function
which also depends on ωx, ωy, ωv or ωz.

And an integration over ωx and ωy or ωv and ωz, containing the four bosonic and two fermionic
Green's functions from before and two additional fermionic Green's functions which depend
only on ωx, ωy, ωv or ωz.

Exactly as in the previous calculation of the integral over ω2 we compare 2 bosonic and the
single fermionic Green's function with those of an integral that we have �nished to apply these
results to the new diagram.

Determination of Diagram (b)

We start with diagram (b) using the integration of diagram (c). We compare the Green's
functions of the two diagrams and shift the frequencies ω2 and ω5 to −ω2 and −ω5 to obtain
fermionic Green's functions with equal dependencies of ωi like in the integral of diagram (c).
In order to obtain that the bosonic Green's functions depend on a di�erence of two frequencies
we also shift ωx and ωy to the negative.

Diagram �g.(20)(b) Diagram �g.(20)(c)∫∫
dωx dωyG

++
12 (−ωx)G

−−
21 (−ωy)

∫∫
dωx dωyG

++
21 (ωx)G

−−
12 (ωy)∫

dω2D
++
a (ω2 − ωx)G

−+
11 (−ω2)D

−−
a (ω2 − ωy)

∫
dω2D

++
a (ω2 − ωx)G

+−
11 (ω2)D

−−
a (ω2 − ωy)∫

dω5D
++
b (ωx − ω5)G

+−
22 (−ω5)D

−−
b (ωy − ω5)

∫
dω5D

++
b (ωx − ω5)G

−+
22 (ω5)D

−−
b (ωy − ω5)

Diagram �g.(20)(b) with shifted frequencies∫∫
dωx dωyG

++
12 (ωx)G

−−
21 (ωy)∫

dω2D
++
a (−ω2 + ωx)G

−+
11 (ω2)D

−−
a (−ω2 + ωy)∫

dω5D
++
b (−ωx + ω5)G

+−
22 (ω5)D

−−
b (−ωy + ω5)

Now we can argue in the same manner as before. The fermionic Green's functions are equivalent
to those of diagram (c). The argument of the bosonic Green's functions changed the sign
compared to diagram (c). They contain a principle part which is symmetric to the zero point
and a delta function which is symmetric to the y-axis. Therefore we obtain the same de�nite
integral as before but change the sign of the principle parts and replace Ω−x,y with Ω+

x,y.
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Determination of Diagram (g)

In the next step we consider diagram (g) using the integration of diagram (c). In the �rst step
we compare the integrands of the integration over ω5. The fermionic Green's function is equal.
The argument of the bosonic Green's function of (g) depends again on the negative argument
of diagram (c). The indices changed from x and y to v and z. As before the integration leads to
the equal de�nite integral as in (c) and we change the sign of the principle part and the variable
Ω−x,y to Ωv, z+. In a next step we consider the integration over ω2. We shift the frequencies ω2,
ωv and ωz to negative values and obtain again the same structure of the fermionic and bosonic
Green's functions with negative arguments that we know how to solve. It is important to note
that the second shift of the frequencies ωv and ωz also shifted the frequencies in the de�nite
integral of ω5. Therefore the variables Ω+

v,z are shifted to −Ω−v,z.

Diagram �g.(20)(g) Diagram �g.(20)(c)∫∫
dωv dωzG

+−
21 (−ωv)G

+−
12 (−ωz)

∫∫
dωx dωyG

++
21 (ωx)G

−−
12 (ωy)∫

dω2D
++
a (ω2 − ωz)G

−+
11 (−ω2)D

−−
a (ω2 − ωv)

∫
dω2D

++
a (ω2 − ωx)G

+−
11 (ω2)D

−−
a (ω2 − ωy)∫

dω5D
++
b (ω5 − ωv)G

−+
22 (ω5)D

−−
b (ω5 − ωz)

∫
dω5D

++
b (ωx − ω5)G

−+
22 (ω5)D

−−
b (ωy − ω5)

Determination of Diagram (f)

We consider diagram (f) using again the integration of diagram (c). The integration over ω2

is completely equal to the one of diagram (c) paying attention to the changed indices from
x and y to v and z. After we did this integration we shift the frequencies ω5, ωv and ωz

to negative values and obtain again the structure of an equal fermionic Green's function and
bosonic Green's functions with negative arguments. Du to the second shift of the frequencies
ωv and ωz we shift again the frequencies in the de�nite integral of ω2. Therefore the variables
change from Ω+

v,z to −Ω−v,z.

Diagram �g.(20)(f) Diagram �g.(20)(c)∫∫
dωv dωzG

−+
12 (ωv)G

−+
21 (ωz)

∫∫
dωx dωyG

++
21 (ωx)G

−−
12 (ωy)∫

dω2D
++
a (ω2 − ωz)G

+−
11 (ω2)D

−−
a (ω2 − ωv)

∫
dω2D

++
a (ω2 − ωx)G

+−
11 (ω2)D

−−
a (ω2 − ωy)∫

dω5D
++
b (ω5 − ωv)G

+−
22 (−ω5)D

−−
b (ω5 − ωz)

∫
dω5D

++
b (ωx − ω5)G

−+
22 (ω5)D

−−
b (ωy − ω5)
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Determination of Diagram (e)

Now we focus on diagram (e) by use of the integration of diagram (c). The arguments of
the diagrams are equal. The only di�erence is the used component of the fermionic Green's
function.

Diagram �g.(20)(e) Diagram �g.(20)(c)∫∫
dωx dωyG

++
21 (ωx)G

−−
21 (ωy)

∫∫
dωx dωyG

++
21 (ωx)G

−−
12 (ωy)∫

dω2D
++
a (ω2 − ωx)G

+−
12 (ω2)D

−−
b (ω2 − ωy)

∫
dω2D

++
a (ω2 − ωx)G

+−
11 (ω2)D

−−
a (ω2 − ωy)∫

dω5D
++
b (ωx − ω5)G

−+
12 (ω5)D

−−
a (ωy − ω5)

∫
dω5D

++
b (ωx − ω5)G

−+
22 (ω5)D

−−
b (ωy − ω5)

Therefore we compare the two fermionic Green's functions G−+12 (ω5) and G
−+
22 (ω5).

G−+12 (ω5) =
iΓ

|Ω|2
[
(ω5 − ε)2

(
e−i

φ
2 fL + ei

φ
2 fR − 2 cos

φ

2

)
− Γ2 sin2 φ

2

(
fLe

iφ
2 + fRe

−iφ
2 − 2 cos

φ

2

) ]
G−+22 (ω5) =

iΓ

|Ω|2
[(

(ω5 − ε)2 + Γ2 sin2 φ

2

)
(fL + fR − 2)− Γ(ω5 − ε) sinφ (fL − fR)

]
The two parts in G−+12 (ω5) containing ”− 2 cos φ

2
” are not combined with a Fermi function and

will therefore drop out at the integration. The same happens for the factor ”− 2” in G−+22 (ω5).
The exponential functions are just additional factors that are multiplied after the integration.
The main di�erence is that G−+12 (ω5) doesn't contain a part proportional to ω5 − ε. Therefore
the coe�cients bi become all zero. To solve the integral we can use the de�nite integral that we
obtained from diagram (c), cross out the terms according to the coe�cients bi and multiply the
exponential functions. Since the di�erence between the greater and lesser Green's function is
only the constant factor without the Fermi function, the integration over ω2 works in the same
way.

Determination of Diagram (d)

We obtain diagram (d) by use of diagram (b). If we compare the two integrals we recognize
the same similarities as between diagram (c) and (e). So we can use the de�nite integral of
diagram (b) with the same modi�cations that we discussed before.

Diagram �g.(20)(b) Diagram �g.(20)(d)∫∫
dωx dωyG

++
12 (−ωx)G

−−
21 (−ωy)

∫∫
dωx dωyG

++
12 (−ωx)G

−−
12 (−ωy)∫

dω2D
++
a (ω2 − ωx)G

−+
11 (−ω2)D

−−
a (ω2 − ωy)

∫
dω2D

++
a (ω2 − ωx)G

−+
21 (−ω2)D

−−
b (ω2 − ωy)∫

dω5D
++
b (ωx − ω5)G

+−
22 (−ω5)D

−−
b (ωy − ω5)

∫
dω5D

++
b (ωx − ω5)G

+−
21 (−ω5)D

−−
a (ωy − ω5)
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5 Conclusion

5 Conclusion

Motivated by several experiments in system formed by quantum dots microwave cavities, we
studied a system of two parallel quantum dots in an Aharonov-Bohm set up interferometer
(ABI) coupled to two electrodes, with each dot coupled to a microwave cavity.

Our goal was to explore correlation and entanglement between the two cavity �elds generated
by the coherent transport of a single electron traveling in two di�erent paths of the ABI.

In this thesis we focused on the calculation of a correlation between the two microwave cavities
by calculate the covariance. For this we relay on the diagrammatic perturbative expansion,
using the Keldysh Greens functions, to the fourth order in the dot-cavity coupling constant.
According to the non-equilibrium perturbation theory on the Keldysh contour we calculated the
terms of the perturbative expansion by Wick's theorem. This leads to a sum of multiplications
of Green's functions that could have been represented as Feynman diagrams. We were able to
determine that the covariance is selected only to to seven diagrams.

To calculate these diagrams we identi�ed three di�erent types of diagrams and transformed
each of them from contour times to the real times by parameterizing the Keldysh contour.

Generally this leads to a large expression because each contour time arguments has two possible
positions on the contour. We discussed the zero temperature limit such that all possible orders
of time arguments reduce to one.

We used the Fourier transformations of the free Green's functions. We did the time integration
and obtained an integration of four bosonic and four fermionic Green's functions over four
frequencies. Using a partial fraction decomposition we did the integration over two frequencies.
We obtained an analytic formula that includes only two integrations over the frequencies.

To summarize, we derived an analytic formula for the covariance that is now ready to be
computed numerically. Therefore the next step would be the numerical evaluation and to
investigate the behavior of the system for di�erent regimes of the parameters, for example by
varying the magnetic �ux or the bias voltage.

Subsequently, we will explore if the states of the cavities are not only correlated but also
entangled. We will calculate the second-order coherence function, entering in the Cauchy-
Schwarz inequality, using again the diagrammatic perturbative expansion in a similar way as
done in this thesis.
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