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Abstract

Since the realization of high quality superconducting microwave cavities|20], the so-called circuit
quantum electrodynamics enables the possibility to investigate the coherent interaction of light
and matter. Artificial atoms can be realized with quantum dots, and experiments have already
proved strong coupling between a quantum dot and a microwave cavity|22, 23]. We study
two parallel quantum dots arranged in the geometry of an Aharonov-Bohm interferometer
(ABI)[IR, 19]. Each dot is capacitively coupled to a microwave cavity. We explore how quantum
correlation between the two cavity fields is generated by the coherent transport of a single
electron traveling in two different paths of the ABI. We want to calculate the covariance of the
two cavity fields by use of a diagrammatic perturbative expansion (Keldysh Greens functions)
to the fourth order in the dot-cavity coupling constant. Thus we develop an analytic formula
ready-made for a numerical evaluation to test the covariance for varying magnetic flux.






Deutsche Zusammenfassung

Motiviert von unterschiedlichen Experimenten ein System aus Quantenpunkten und Kavititen
zu untersuchen, betrachten wir ein System, in dem zwei Quantenpunkte in ein Aharonov-Bohm
Interferometer (ABI) eingebettet sind, wobei jeder Quantenpunkt kapazitiv an eine Mikrow-
ellenkavitiat gekoppelt wurde.

Unser Ziel ist es die Korrelation oder Quantenverschriankung der beiden Kavitdten zu unter-
suchen, verursacht durch den kohéarenten Transport eines einzelnen Elektrons, das sich in zwei
verschiedenen Armen des ABI bewegt.

In dieser Thesis haben wir uns zundchst auf die Korrelation beschrédnkt. Dazu berechnen
wir die Kovarianz der beiden Mikrowellenkavititen. Dafiir haben wir einen dquivalenten aber
vollstindig zeitgeordneten Ausdruck definiert. Diesen entwickeln wir nun in einer diagramma-
tischen Storungsentwicklung bis zur vierten Ordnung der Kopplungskonstanten von Quanten-
punkt und Kavitdt. Dazu nutzen wir die Keldysh Green’schen Funktionen. Um die Terme
der Storungsrechnung zu berechnen verwenden wir das Wick’sche Therorem. Dieses fiihrt zu
einer Summe mehrerer Multiplikationen Green’scher Funktionen, die man auch durch Feynman
Diagramme darstellen kann. Wir kdnnen zeigen, dass sich die Kovarianz auf sieben Diagramme
reduziert.

Um diese Green’schen Funktionen zu berechnen greifen wir sowohl fiir die freie retardierte und
avancierte als auch fiir die Kelysh Green’schen Funktionen auf die Dyson Gleichung zuriick. Um
die sieben Diagramme zu berechnen identifizieren wir zunéchst drei verschiedene Diagramm-
typen. Jeden dieser Typen haben wir von Konturzeiten zu Realzeiten transformiert. Dazu
wurde die Keldysh Kontur parametrisiert. Normalerweise fiihrt dies zu einer groften Anzahl
von Termen, da jede Konturzeit auf zwei verschiedenen Zweigen der Keldysh Kontur liegen
konnte. Da wir den Grenzfall einer Temperatur von Null Klevin betrachten reduzieren sich alle
Variationsmoglichkeiten auf eine einzige.

Im néchsten Schritt haben wir die Fouriertransformationen der Green’schen Funktionen einge-
setzt und iiber die Zeiten integriert. Ubrig blieb eine Integration von vier freien bosonischen und
vier fermionischen Green’schen Funktionen, integriert iiber vier unterschiedliche Frequenzen.

Mit einer Partialbruchzerlegung konnten wir die Integration iiber zwei Frequenzen durchfiihren.
Wir haben also eine analytische Formel erhalten, in der nur noch zwei Integrationen iiber die
Frequencen enthélt.

Zusammengefasst haben wir eine analytische Formel fiir die Kovarianz hergeleitet, die nun nu-
merisch berechnet werden kann. Der nichste Schritt ist diese numerische Implementierung,
die es uns ermoglicht iiber die zwei iibrigen Frequenzen zu integrieren und das Verhalten des
Systems, abhédngig von Grofen wie dem magnetischen Fluss oder die Bias Spannung, zu unter-
suchen.

Anschliefsend werden wir untersuchen ob die Zustinde der Kavitdten nicht nur korreliert son-
dern sogar quantenverschrinkt sind. Dazu berechnen wir die Kohédrenzfunktion zweiter Ord-
nung und testen die Cauchy-Schwarz Ungleichung, indem wir erneut die diagrammatische
Storungsentwicklung benutzen, dhnlich wie bereits in dieser Thesis gezeigt.






Contents

Contents

Acknowledgment

Bbstract

Deutsche Zusammentassung

I Introduction and 1 heoretical background
IL.1  Klectronic lransportl . . . . . . . . . . . . . ... o

L2 Double-Dot Aharonov-Bohm Interterometen

IL.o  Single Quantum Dot Coupled to a Microwave Cavity] . . . . . . . . . . ..
L.4 Inequalities in (Quantum Coherence lheory . . . . . . . . . . . . ... ...
IL.o Parallel Double-Dot Coupled to Microwave Cavitie§ . . . . . . . . . . . ..
IL.6 Proceeding and Structure ot the Work . . . . . . . . . ... ... .....

2 Green's Functions and Perturbation ['heory

21 Beal Time (Green’s Functions of Double-Dof. Aharonov-Bohm Interterometed

R.2 Formalism of the Keldyvsh Green’s Functions and Ferturbation 1lheroy . . .

.o Keldvsh Green’s Functions ot Double-Dot Aharonov-bohm Interterometey . . . .

E.0.1 Unperturbed Greater and Lesser GGreen's Functiony . . . . . . . ..
R.o0.2 Dvyson KEquation and Full Green’s Functiony§ . . . . . . . . . . . ..
.4 bBbosonic Green’s Functions ot a Single Microwave Cavity . . . . . . . . ..

B Diagrammatic Perturbative Expansion ot the Covariance
p.1 Derivation of the Covariance From the lime-Ordered Expression . . . . . .

b.2 Color Code and Legend ot the Green’s Functions and Feynman Diagramyg . . . .

b.o  Perturbative Kxpansion of the Single Cavitied . . . . . . . . . . ... ...
p.4 Perturbative Expansion of the Combined Cavities A and b . . . . . . . ..
b.o  Neglect of ladpole Diagramg . . . . . . . . . . . . ... ... ... .....
b.6  Perturbative Expansion represented as Feynman Diagrams . . . . . . . . .
b.7 Specinication of the Covariance 1n lerms of the Perturbative Expansion . .

A Results: Analytic Formula for the Covariance
k.1  Real l1me and Frequency Representation . . . . . . . . . . . . .. .. ...
d.1.1  "Iransiormation of the Bubble Diagram| . . . . . . . .. .. .. ...
g.1.2 ‘lranstormation of a square-shaped Diagram . . . . . . . . . . . ..
B.1.o0  Iransiormation of a Iwisted-shaped Diagram| . . . .. ... .. ..
1.2  Integration at the Example of a Square-Shaped Diagram| . . . . . . . . ..
i.2.1 Integral Contaimning lwo Principal Valueg . . . . . . . . . ... ...
g.2.2  Integration of Components Containing Delta Functiony . . . . . . .
B.2.o  Full Analytical Integral . . . . . . . . . . . . ... ... ...
A.o  EBExtension of the Integration to the Remaining Diagramy . . . . . . . . ..

b_Conclusion

15
... 16
..o 19
... 20
Co. 22
.. 24
... 26

27
27
o029

. 15
... 38
|

44
L. 44
45
... 45
... 90
R ¥
... o6
... 08



Contents

List of Symbols and Abbreviations

A
Ac

Coherent sate

Vector potential

cross-sectional area

Aharonov-Bohm interferometer

Bosonic creation (annihilation) operator of cavity a
Bosonic creation (annihilation) operator of cavity a
1/kT with the Boltzman constant and the Temperature
Magnetic field

Covariance

Creation (annihilation) operators of the contacts
Creation (annihilation) operators of the dots

Coherent displacement operator and

Unperturbed Bosonic Green’s function of resonator a,b
Energy levels of the contacts

Energy levels of the dots

Elementary charge

Energy of the system

Retarded and advanced energy, shifted by £in

Green’s function with operators A = ab

Fermi function

Phase shift of an electron traveling in the Aharononv-Bohm structure with ¢ =
Aharonov-Bohm Phase

Magnetic flux

Magnetic flux quanta

¢ Bosonic operators

r,a,=F

GT‘,(I
G*F

9

= Q

GS) 1z

=

10

General dot-cavity coupling strength

Conductance

Quantum of conductance

Unperturbed retarded, advanced, lesser and greater fermionic Green’s function
Retarded and advanced Green’s function

Time-ordered, lesser, greater and anti-time ordered Keldysh Green’s function
Keldysh Green’s functions in matrix notation

Scattering rate of the leads

Ground state of resonator 1,2, respectively a,b

Plank constant

211P
®9



Contents

Zint

Hamiltonian of the complete systems

Unperturbed Hamiltonian

Interaction Hamiltonian

Hamiltonian of the contacts in the noninteracting resonant-level model
Hamiltonian of the central region in the noninteracting resonant-level model
Tunnel-Hamiltonian in the noninteracting resonant-level model
Current

Fermi-wave vector

Common denominator of G" - G*

Length of the conductor

phase-relaxation length

mean free path

Fermi-wavelength

Dot-cavity coupling strength of dot 1 and cavity a or dot 2 and cavity b
Chemical potential of the left, right lead

initial electronic state

initial state of the complete system

field operator in the Heisenberg picture with respect to Hamiltonian H
Fermionic operators

Density matrix

Local density of states at energy E

electrical conductivity

Total self energy

Tunneling self energy from a left, right lead

Self energy from interaction inside the central region

Transmission of mode n

mean free time

Time ordering operator

Contour-time ordering operator

Tunneling coupling between the lead r and dot ¢

Time evolution operator

Voltage

Fermi velocity

Perturbation in terms of the tunneling

; Tunneling coupling between the lead o and dot ¢

Resonance frequency of cavity a, b
Shift of the frequency w, with a = v, x,y, 2w, £ wy

number of transpositions of operators

11






List of Figures

List of Figures

a) Classical diffusive transport regime. b) (Quantum transport regime an weakl

localization. ¢) Ballistic transport regime. From [7[) . . . . . . . . . ... .. ..

2

Double-dot_ Aharonov Bohm Interterometer]

bExperimental results of A. Holleitner et al. Tor weak and imtermediate coupling|

pbi two quantum dots mm an ABll . . . . . . . .. .. Lo

ochematlic representation of a quantum dot, considerable as a two level system)

coupled to a microwave cavity with coupling strength g and the decay rate ol
the photon field. Picture adapted from |211} . . . . . . .. ... ... ... ...

Color scale plot of the differential conductance ot one quantum dot. a) Both|

Coulomb diamonds and the the Kondo ridge at zero bias can be seen by sweepq
ing the source-drain and gate voltages of the dot|[21|. b) Energy level sphitting
depending on the input power ol the microwave cavity 1or a quantum dot 1in|
Coulomb blockade regime|21} . . . . . . . . . . . ..o,

Color scale plot of the differential conductance ot one quantum dot. a) Both|

Coulomb diamonds and the the Kondo ridge at zero bias can be seen by sweep-
ing the source-drain and gate voltages of the dot|[21|. b) Energy level sphitting
depending on the input power ol the microwave cavity Ior a _quantum dot 1in|
Coulomb blockade regime|21} . . . . . . . . . . . ...

Parallel quantum dots coupled to microwave cavities . . . . . . . . . . . . ...

[T0

Sketch of the 1dea of entangled cavities via a quantum double-dot) . . . . . . . .

‘ladpole diagram of order ot A as integrand ol the first order perturbative expan-

.......................................

L0

Integrand ot the perturbative expansion ot (b) up to third ordey . . . . . . . ..

101

Feynman diagrams ol the zeroth order perturbative expansion . . . . . . . . . .

L2

Feynman diagrams ol the second order perturbative expansion). . . . . . . . . .

115}

Feynman diagrams of the perturbative expansion oi the rourth order of the singlg

L4

Feynman diagrams ol the fourth order perturbative expansion of the combined

cavities - PATt 4 . . . . . . . e e e e e e e e e e e e e e e e e

Lo

Feynman diagrams of the Covariancd . . . . . . . . . . . . . . . ...

Lo

‘I'hree different types ol diagrams that are contained in the covariance| . . . . .

(L7

basic diagram of the bubble diagram/ . . . . . . . . . . . . . ... ... ..

[Ls

basic diagram of the square-shaped diagrams) . . . . . . . . . . . . . ... ...

1E2)

basic diagram of the twisted-shaped diagrams) . . . . . . . . . . . . . . .. ...

20

All diagrams 1or the calculation of the covarianceg . . . . . . . . . . . .. . ...

13






1 Introduction and Theoretical background

In recent years, the development and fabrication of devices of nanoscaled length is well ad-
vanced. Also the theoretical interest increased and the field of mesoscopic physics is getting
larger. The transport properties of electronic nanostructures is a large research area. Phase co-
herent transport enables the possibility for interference experiments. A well studied mesoscopic
system is the Aharonov-Bohm interferometer (ABI)[L1).

Important and well studied systems are quantum dots. Quantum dots consist of a small amount
of localized electrons, confined in all three spatial dimensions with discretized energy levels. The
investigation of quantum dots revealed interesting properties and phenomena like the resonant
tunneling|24|, Coulomb blockade|25, 26| and the Kondo effect|27].

The cavity quantum electrodynamics deals with the interaction of light and matter at the most
elementary form. For instance a single atom can interact with few photons of a single-mode
cavity[20, BR|. The dipole interaction with the photon field induces a controllable entanglement
by modification of the photon field|21].

The so-called circuit quantum electrodynamics investigates similar systems as the cavity quan-
tum electrodynamics but the photon is stored in a one-dimensional on-chip resonator|39]. The
atom can be replaced with a quantum dot with two levels which acts like an artificial atom|38].
Several experiments have already proven a strong coupling between quantum dots and mi-
crowave cavities|22]. Since this can also be used as a qubit and the qubit could be readout
through the cavity the circuit quantum electrodynamics is an interesting field of quantum
computation.

In this thesis we combine several of these aspects. We developed a system of two parallel
quantum dots, whereby each dot is embedded in one path of an ABI. Both dots are indepen-
dently coupled to two separate microwave cavities. Due to the coherent transport of an electron
through the two branches of the ABI, i.e. through the dots that are coupled to the cavities,
we expect a quantum correlation or entanglement of the two photonic fields. We explore this
correlation using a diagrammatic perturbative expansion, in particular the Keldysh Green’s
functions, and derive an analytic formula ready for a numerical evaluation.
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1 Introduction and Theoretical background

1.1 Electronic Transport

It is well known that we can describe the current in macroscopic systems by Ohm’s law [ =
G - U, which says that the current is proportional to the applied voltage. The constant of
proportionality is the conductance G = 0A./L. The current increases linear with the cross-
sectional area A. and decreases due to the length of the sample L. Here the constant of
proportionality is the electrical conductivity ¢ which depends on the material|d].

Since it became possible to produce much smaller devices one could ask what changes, regarding
this behavior, when the dimensions of the system are reduced. The answer is, that Ohm’s law
is no longer valid. To describe this so-called mesoscopic regime, which is still larger than the
atomic scale, we have to compare the dimensions of the conductor with some characteristic
length scales|d].

The first length scale is the Fermi-wavelength A\ = 27 /kp corresponding to the de-Broglie
wavelength of an electron at the Fermi level. Since we consider the system at low temperatures
the current is mainly determined by electrons near the Fermi level. The second length scale is
the mean free path L,, = vp -7, corresponding the distance an electron could travel without
being scattered whereby vg is the Fermi velocity and 7, is the corresponding traveling-time.
Finally we have the phase-relaxation length L, "|...] the distance that an electron travels before
its initial phase is destroyed"[D]. For this we imagine that an electron splits its path into two and
recombine them later. If these paths are equal there should be a perfect constructive interference
at the end. Elastic scattering at static defects doesn’t affect this process in contrast to inelastic
scattering like electron-electron and electron-phonon scattering or scattering on impurities with
an internal degree of freedom like magnetic impurities|l]. Since these length scales depend on
several external influences, like the temperature or the magnetic field, they can vary from only
a few nanometers to hundreds of micrometers |I].

We have mesoscopic regime if the length scale L of the system is smaller than the phase-
relaxation length L. In this case a coherent propagation of the electron through the conductor
is possible whereas the mean free path L,, still determines the amount of scattering events on
spatial potential fluctuations inside the conductor.

Figure 1: a) Classical diffusive transport regime. b) Quantum transport regime an weak local-
ization. ¢) Ballistic transport regime. From [{].

In the well known macroscopic regime, where Ohm’s law is valid, the length of the system is
much larger than the mean free path L,, < L and the phase-relaxation length. Here we have

16



1.1 Electronic Transport

diffusive classical transport, depicted in Fig.(0) (a), and the conductivity is described by the
Drude model. If L is smaller than L, but larger than L,,, L, > L > L,,, we have diffusive
quantum transport in a mesoscopic regime. The Drude model doesn’t hold in this case. The
electron is scattered several times inside the sample. It is possible that it is backscattered on
exactly the same path as we can see in Fig. (0) (b). If L, is now larger than L,, this results
in an destructive interference and we have a kind of weak localization. This deconstructive
interference leads to a negative logarithmic correction to the Drude Model[d]. If the length
scale of the system is much smaller than the mean free path and the phase-relaxation length,
L < L,,, L, we are in the ballistic regime and the scattering with electrons or the boundaries
of the sample dominates, see Fig. (I) (c).

If the length is comparable to the Fermi wavelength Ap this means that the electron cannot
propagate in this direction. Therefore the system is completely confined in this dimension. If
we split the length scale L of the system in the lengths of the three spatial dimensions L, .
we obtain, depending on the number of completely confinements, different geometries in the
mesoscopic regime. We abbreviate the Fermi wavelength, mean free path and phase-relaxation
length with Lo|6].

Two dimensional

L,,>Ly>1L
T,y 0 z nanostructure

Quantum Wells

One dimensional

L L L
z > Lo > LY, 2 nanostructure

Quantum Wires

Zero dimensional

Quantum Dots
nanostructure

LO > szyvz

Table 1: Nanostructures in different dimensions compare [6].

A description of the conductance in this regime was developed by Landauer in the end of the
1950s[8|. His theory is also called Landauer or scattering approach. He proposed "|...]that if
one can ignore inelastic interactions, a transport problem can always be viewed as a scattering
problem"[4]. Therefore the electrical conductance can be expressed in terms of the transmission
probability. This relation is the so-called Landauer formula

2¢? &

The main idea is to determine the transmission values of all modes that contribute to the
current. These individual transmission have to be summed up whereby a perfect transmission
would give exactly one quantum of conductance Gy = 2¢%/h. Therefore the current depends
not directly on the length and cross-sectional area of the conductor but indirectly. A larger
contact leads to a different amount of modes that give an contribution to the conductance|d].

A very common used two dimensional device is a GaAs-AlGaAs-heterostructure. GaAs and Al-
GaAs have different conduction, valence and Fermi energies and if they are connected electrons

17



1 Introduction and Theoretical background

travel towards the GaAs with the lower Fermi level and create positively charged donors in the
AlGaAs. This leads to an electrostatical potential which affects the conduction and valence
band. An area appears where a sharp peak and dip of the conduction band creates a small
area under the constant Fermi energy and confines the electrons in one dimension. This is the
so-called two dimensional electron gas (2-DEG), a thin conduction layer|l].

This heterostructure can be used to generate a zero dimensional nanostructure - a quantum
dot. For this one evaporates gold electrodes on top of the GaAs-AlGaAs-heterostructure and
applies a gate voltage. Due to the field effect of the electrodes the two dimensional electron
gas is depleted and one could define a small quasi-zero dimensional area, the quantum dot. A
similar procedure can be applied to carbon nanotubes instead of the 2DEGI31].

These quantum dots are similar to atoms: strong localized electrons with a discretization of
the energy levels. Therefore quantum dots can be used as artificial atoms. The advantage is
that one can control the properties of the dots easily in contrast to normal atoms|TY].

To study such more complex phenomenaf(i.e. interactions) we have to introduce a new method
because the Landauer approach is not able to describe transport situations with inelastic
interactions[d]. One theoretical method is the Keldysh Greens functions technique that is
able to describe the quantum transport in a mesoscopic conductor beyond the linear regime
(nonequilibrium regime) and in presence of interaction in the quantum dots. The only condition
is that we know the Hamiltonian of the system.

Noninteracting Resonant-Level Model

In this thesis we consider systems that contain quantum dots which are coupled via tunneling
to the leads. So we start by discussing mesoscopic tunneling structures in the noninteracting
resonant-level model. Then the Hamiltonian of a mesoscopic tunneling model can be divided
in three parts|?]

H =Hc + Heen + Hr .

He = Z €ka02a0ka Hamiltonian of the noninteracting contacts(i.e. Fermi gas).
ka€eL,R
Hamiltonian of the central region. For the noninteracting
H., = Z 5id;rdi resonant-level model the Hamiltonian includes only the non-
i interacting creation and annihilation operator of an electron
in state 1.

Hr = Z Vka’ic,tadi + h.c. Tunneling coupling of the leads and the central region with
kacL,R the resonant levels.

X=X+ Xg The self energy of the system is given by the contributions
of the tunneling.

Yamn(€) = Z Viam9kaVea,n  Tunneling self-energy.
k

18



1.2 Double-Dot Aharonov-Bohm Interferometer

€ka, €; are the energy levels of the contacts or dots. cJ,rm, Cre are the creation and annihilation
operators of the contacts and dZT, d; those of the dots. Vi, is the tunneling coupling between
the lead v and dot 7. gi, is an unperturbed Green’s function of the system.

1.2 Double-Dot Aharonov-Bohm Interferometer

As a first example of the noninteracting resonant-level model we consider the case of two
resonant levels: A parallel double quantum dot coupled to a left and right lead. As an additional
controlling field we apply a magnetic flux. The system is depicted in Fig. (#). The magnetic
flux leads to a phase shift of the electrons. Since this symmetric phase shift occurs when the
electron travels between a lead r and a dot ¢ we include it in the tunneling parameter t,; = tetit
whereby the sign depends on the traveling direction of the electron. The Hamiltonian reads

H= Z EerLTCkr + Z €id;rdi + Z (t”czrdi + h.c.)

kr=L,R i=1,2 i=1,2
kr=L,R

The operators are defined for the noninteracting resonant-level model.

Figure 2: Double-dot Aharonov Bohm Interferometer. Two parallel quantum dots are coupled
to a left and right lead. A magnetic flux is applied in the loop.

This geometry plays an important role in experimental physics. In general the measured quan-
tity in experiments is the current. The Aharanov Bohm interferometer (ABI) offers the possibil-
ity to perform interference experiments with mesoscopic nanostructures, to use the information
provided in the phase. The geometry is like the one in Fig.(2) except for the two quantum
dots. A magnetic field B is applied in such a way that it is confined inside the area enclosed
by the loop but vanishes along the loop and beyond. The electron travels along these paths
and its phase depends on the vector potential A caused by the magnetic field, B = V x A.
If an electron takes on turn through the complete ring it acquires the Aharonov-Bohm-phase:
Apap = —le|/h$ Ads = —le|/hd = —2m¢/do[LT].

In a transport experiment an electron can travel trough the upper or lower branch which leads
to an effective phaseshift of Apsp. Due to this an interference periodic in the magnetic field,
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1 Introduction and Theoretical background

with periodicity AB = h/eS occurs in the measured current by sweeping the magnetic field,
while S is the area of the loop|d].

Studying transport through quantum dots, like resonant tunneling, Coulomb blockade, and
the Kondo effect the common measured quantity is the current which provides no information
weather the transport is coherent or not. This information can be obtained by embedding a
quantum dot in an ABI[IZ].

Transport through quantum dots that are arranged in an ABI are theoretically well investi-
gated, both with one or two dots, taking into account electron-electron Coulomb interaction or
spin|[2, I3, T4]. There have also been several experiments placing one quantum dot in an ABI
and considering coherent transport|I5, 6] or the Kondo-effect[I7]. An experiment with two
quantum dots, each one in another branch and depicted in Fig. (8), was done by A. Holleitner
et al.|I8]. They were able to tune the coupling between the dots and demonstrate for a weak
coupling Aharonov-Bohm oscillation on the Coulomb diamonds, see Fig.(8) (c). For interme-
diate coupling the showed a coherent coupling of the two dots and that the tunnel splitting
depends on the magnetic field, see Fig.(8) (d).

Figure 3: Experimental results of A. Holleitner et al.|[I8]| for weak and intermediate coupling of
two quantum dots in an ABI. a) and b): Setup of the device. Two parallel quantum
dots coupled to a left and right gate 1,2 and the gates 3-4 for the measurement. c)
Weak coupling: Coulomb blockade resonances of the double dot, through detuning of
the gates 3-5, and Aharonov-Bohm interferences in the current amplitude by varying
the magnetic field as shown in the inset. d)Intermediate coupling: Charging diagram
spanned by voltage of gate 3 and 4. The two connected circles denote the coherent
coupling of the two quantum dots. Two arrows pointing at each other show two
regions that indicates coherent coupling. Ref. [I§].

1.3 Single Quantum Dot Coupled to a Microwave Cavity

Another interesting application in mesoscopic physics of the quantum dots is in the "circuit
quantum electrodynamic". Since the realization of high quality superconducting microwave
cavities|20], circuit quantum electrodynamics enables the possibility to investigate the coherent
interaction of light and matter. This can be reached using a quantum dot that represents some
kind of an artificial atom and placed in a high quality superconducting microwave cavity[20, 22,
23]. The schematic representation in Fig.(d) shows the quantum dot, that can be considered
as a two level system coupled to a cavity with coupling strength g.
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1.3 Single Quantum Dot Coupled to a Microwave Cavity

Figure 4: Schematic representation of a quantum dot, considerable as a two level system, cou-
pled to a microwave cavity with coupling strength g and the decay rate x of the
photon field. Picture adapted from [21].

Delbecq et al. studied the case of one|22] or two|23| quantum dots coupled to a cavity. There
are two possibilities for the readout. In the first case the state of the quantum dot affect
the electromagnetic mode which can be observed by detecting the outgoing field. The second
opportunity is the detection of the state of the quantum dot so that one can gain information
regarding the photon state|2I]. In the case of the single quantum dot coupled to a microwave
cavity they were able to detect the strong electronic interactions of the quantum dot as Coulomb
diamonds and the Kondo effect as depicted in Fig.(8) (a), whereby the red line is a cut at zero
bias that we will not discuss here. By tuning the input power of the microwave cavity one can
observe the funnel shaped splitting of the energy levels of the quantum dot depicted in Fig.(B)
(b). This could be due to a direct coupling of the quantum dot levels with the cavity mode|21|.

Figure 5: Color scale plot of the differential conductance of one quantum dot. a) Both Coulomb
diamonds and the the Kondo ridge at zero bias can be seen by sweeping the source-
drain and gate voltages of the dot|21]. b) Energy level splitting depending on the input
power of the microwave cavity for a quantum dot in Coulomb blockade regime|21].

They also investigated two separated quantum dots that are both coupled to the same cavity.
They drove the gate voltages of each quantum dot and readout the differential conductance of
one quantum dot. As depicted in Fig.(B) (a) they were able to detect a crossing and anticrossing.
Fig.(8) (b) is a close up of an anticrossing region. This indicates some kind of correlation
between the displaced dots since a normal superposition should lead to an equal behavior of
the energy levels of the dot|21].
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Figure 6: Color scale plot of the differential conductance of one quantum dot. a) Both Coulomb
diamonds and the the Kondo ridge at zero bias can be seen by sweeping the source-
drain and gate voltages of the dot|21|. b) Energy level splitting depending on the input
power of the microwave cavity for a quantum dot in Coulomb blockade regime|21].

1.4 Inequalities in Quantum Coherence Theory

We have seen so far that there are several possibilities to investigate a single or several quan-
tum dots. In the case of several quantum dots, like the two separated quantum dots in the
microwave cavity, it is of high interest if the states of the dots are correlated or even entangled.
Entanglement is one of the most important things to differ between classical and the quantum
physics. One can derive several inequalities to proof a correlation or entanglement.

We can describe the quantum mechanical state of a system via its density matrix, p. If we
measure an observable we determine actually the expectation value that is a trace of the density
matrix and the related operator. We consider a bipartite system, containing two subsystems (1)
and (2), for example two quantum dots, two cavities or a dot and a cavity, with commutating
operators. The system is defined as separable or uncorrelated if the density matrix p of the
combined system is a direct product of the two sub-system density matrices p and p, so
p=pM @ p?2).

In this separable case the measurement result of any value A1) of the first subsystem is com-
pletely independent of the measurement result of any value B of the second one. This means
(ADB@) = (AW (B®) for any A and B. If the system is not separable and the density
matrix cannot be factorized, so p # p™ ® p, this equality is violated and concerning this
matter we can define the covariance

C = cov(AVB®) = (AVB@) _ (AW (BA) |

The covariance is nonzero in the case of a correlation between the two subsystems|28|.

To prove if the system is not simply correlated but entangled (i.e. quantum correlation) we
need different equalities. The most known inequality that is violated in the case of quantum
entanglement is the Bell’s inequality. It contradicts the theory of Einstein, Podolsky, and Rosen
that the quantum theory can be explained with hidden variables[30]. But there are several more
where the general separability criterion is used |31, 82, 33, 34, B35|. Furthermore it exists a class
of inequalities which are applications of the Cauchy-Schwarz inequality. For instance, Ref. [36]
analyses entanglement criteria based on the Cauchy-Schwarz inequality |(z, y)|* < (z,z) (y,y)
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and the properties of separable states. We focus on bipartite systems with the expectation
value (A1A2B1B,), whereby A; and B; belong to the two subsystems, and use it to detect
entanglement.

The inequality

<A1A2BIB2>

< <A AlBIB > <ATA B BT>
sep| — 112286p221188p

is valid for separable states and can only be violated by entangled states, which depends on the
choice of the operators A and B.

If Ay=B; =1, Ay = A" = (¢™)" and B, = B = b", whereby a, b are the annihilation and af,
b! the creation operators of system A,B, we obtain the criterion

< <(aT)mam(bT)”b”>

(@),

If Ay =B, =1, Ay = (a™)" and B, = B = b" we obtain the criterion

sep

amer),, | < (), (@),

sep

These two criterion where also discussed by Hillery and Zubairy[31].
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1.5 Parallel Double-Dot Coupled to Microwave Cavities

We consider two parallel quantum dots with energy levels €, o, that are arranged in the geometry
of an Aharonov-Bohm interferometer. The applied flux creates a phase shift to the electrons,
depending on their traveling direction. Each dot is capacitively coupled to a microwave cavity
with different resonance frequencies w,; and to a common left and right lead.

Figure 7: System of two parallel quantum dots, each one coupled to a microwave cavity and to
a common left and right lead.

The system is described through a modified Anderson-Holstein Hamiltonian that includes the
fermion-photon interaction.

H = Z Ekrc};rckr + Z Sldjdl + Z (t”cbdi + hC)
k,=L,R i=1,2 i=1,2
k,,=L,R

+ > hwaala + Ag(a+ al)dldy + M(b+ 0)d}d, . (1.1)

a=a,b
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Here cjw and cg, with 7 = L, R are the creation and annihilation operator of the electrons in

the left and right lead. d;r and d; with 7 = 1,2 are the creation and annihilation operator of the
electrons in the two quantum dots and a, b and af, b are the creation and annihilation operator
of the photons with frequency w,y in cavity a,b. The coupling element ¢,; = te*"1 describes,
just like it was explained in section (), the hopping of an electron from lead r to dot i and
vice versa including a phase shift ¢ = +27® /P, whereby the sign depends on the traveling
direction of the electron.

Quantum Correlation and Entanglement - A Heuristic Argument

We want to explore how quantum correlation and entanglement between the two cavity fields
is generated by the coherent transport of a single electron traveling in two different paths of
the ABI.

Figure 8: Sketch of the main idea regarding an entanglement of two microwave cavities via a
coupled parallel quantum double-dot with an additional applied magnetic flux. The
electron "splits" because of the possibility to travel trough both branches. Therefore
the state of the electron is a coherent superposition of the states of the two dots. The
correlation is extended to the two cavities even when the electron leaves the system.

When one electron travels in the system it "splits" in the sense that it can travel in the upper
or in the lower branch. Depending on the traveling direction a positive or negative phase shift
occurs. We assume that the state of the electron is a coherent superposition between the state
in dot n; and the state in dot ns,

o) = % (Im=1) + [no=1)) .

Therefore the initial state of the system is determined by the electronic state We> and the
ground state of the two cavities |GS), ,,

1
|qjsy5>initial = |We) ’GS>1 ‘GS>2 = E( [n1=1,n,=0) + |”1:Oa”2:1>) ‘GS>1 |GS>2 .
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To determine the time evolution operator of |Wyy,), ... . we consider the Schrodinger equation
with a reduce Hamiltonian

d |\I/sy8>

i
o

= Hred |\Ijsys> .
Neglecting the interaction with the leads, the new Hamiltonian contains only the dots, cavities
and dot-cavity coupling. The time evolution operator becomes

U(t) = Dl[nlal(t)] X Dg[nzag(t)] y

whereby D;[n;c;(t)] is the coherent displacement operator and «;(t) is a coherent state. Now
we are able to consider the time evolution of the initial state of the system.

Weys (1)) =U ) Wsys)inigian = %( [n1=1,12=0) |01 (t)) [GS), + [n1=0,n2=1) |GS), |aa(t)),)

The correlation of the two dots, due to the possibility of the electron to travel through both
branches, is extended to the two cavities. This result indicates the possibility of an entangled
state of the two cavities. This entangled state can remain even when the electron leaves the
system.

1.6 Proceeding and Structure of the Work

We would like to investigate correlation in the system of two parallel quantum dots coupled to
two microwave cavities. To achieve this we calculate the covariance of the two cavities a and b,

C = (namp) = (na) (n) -

If this quantity is non-zero we can conclude that the two cavities are correlated.

We proceed as follows: We use the Keldysh Greens functions techniques and carry out the
perturbative expansion of the system up to fourth order by choosing the dot-cavity coupling as
perturbation.

The covariance contain photon creation and annihilation operators at equal times for instance
(ng) = (al(t)a(t)). Since we consider a full time-ordered expression to do the perturba-
tive expansion, it is necessary to reach the quantity n, = (a'(t)a(t)) from the expression
(T, (a’(t)a(t'))) . This quantity correspond to the so called lesser Greens function in the dia-
gramatic language.

This lesser function contains, due to the application of Wick’s theroem, the unperturbed bosonic
Green’s functions of the two cavities and the fermionic Green’s functions of the noninteracting
tunneling model which are integrated over contour times. We determine the fermionic Green’s
functions using the Dyson equation and consider the dot-lead coupling as perturbation.

In the next step we transform the integration back to real time space and subsequently to
the frequency space. We perform the integration analytically up to a certain point where the
method should be changed to a numerical integration. So in the end we have developed an
expression that is the starting point for a numerical integration and analysis.
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2 Green’s Functions and Perturbation Theory

In a first step we introduce a method to determine easily the energy dependent retarded and
advanced Green’s functions of the dot-lead system. Since the dot-cavity system is more com-
plicated we introduce time-ordered Green’s functions and consider them in an equilibrium and
non-equilibrium system. We introduce a closed time path, which is also denoted as contour,
and show that the transformation to the interaction picture is equal for Green’s functions de-
fined by field operators depending on real times or contour times. We develop the perturbative
theory on this contour and introduce the so called Wick theorem, to handle the terms of the
perturbative expansion easier.

2.1 Real Time Green’s Functions of Double-Dot Aharonov-Bohm
